The integrins are a family of 24 heterodimeric transmembrane cell surface receptors. Involvement in cell attachment to the extracellular matrix, motility, and proliferation identifies integrins as therapeutic targets in cancer and associated conditions: thrombosis, angiogenesis, and osteoporosis. The most reported strategy for drug development is synthesis of an agent that is highly selective for a single integrin receptor. However, the ability of cancer cells to change their integrin repertoire in response to drug treatment renders this approach vulnerable to the development of resistance and paradoxical promotion of tumor growth. Here, we review progress toward development of antagonists targeting two or more members of the Arg-Gly-Asp (RGD) binding integrins, notably αvβ3, αvβ5, αvβ6, αvβ8, α5β1, and αIIbβ3, as anticancer therapeutics.
The integrin family of cell surface receptors integrates cell-extracellular matrix interactions with the cell cytoskeleton and signalling across the cell membrane, resulting in an important role in cell adhesion, mobility and migration, proliferation, and survival. Changes in the number and identity of integrin receptors are common in cancer cells resulting in alteration of the ability of malignant cells to interact with the extracellular matrix, and promoting migration as well as facilitating survival outside the tumour normal environment. beta(3) integrins are potentially involved in every step of the metastatic process and expression of both alpha(IIb)beta(3) and alpha(n)beta(3) is correlated with metastatic ability of tumour cells. The recognition of the RGD binding motif common to the disintegrins and natural integrin ligands such as fibrinogen allowed the development of small molecule beta(3) integrin antagonists, progressing from linear peptides containing the RGD sequence to cyclic peptides with well-defined conformation, and hence to small molecule peptidomimetics with improved pharmacological properties. In this review, we summarize the role of the beta(3)-subfamily of integrins when expressed in normal and tumour tissue, the development of small-molecule antagonists of beta(3) integrins and their potential anti-cancer applications.
Prostate cancer is the third leading cause of male cancer deaths in the developed world. The current lack of highly specific detection methods and efficient therapeutic agents for advanced disease have been identified as problems requiring further research. The integrins play a vital role in the cross-talk between the cell and extracellular matrix, enhancing the growth, migration, invasion and metastasis of cancer cells. Progression and metastasis of prostate adenocarcinoma is strongly associated with changes in integrin expression, notably abnormal expression and activation of the β3 integrins in tumour cells, which promotes haematogenous spread and tumour growth in bone. As such, influencing integrin cell expression and function using targeted therapeutics represents a potential treatment for bone metastasis, the most common and debilitating complication of advanced prostate cancer. In this review, we highlight the multiple ways in which RGD-binding integrins contribute to prostate cancer progression and metastasis, and identify the rationale for development of multi-integrin antagonists targeting the RGD-binding subfamily as molecularly targeted agents for its treatment.
Purpose: Cytochrome P450 2W1 (CYP2W1) is a monooxygenase detected in 30% of colon cancers, whereas its expression in nontransformed adult tissues is absent, rendering it a tumor-specific drug target for development of novel colon cancer chemotherapy. Previously, we have identified duocarmycin synthetic derivatives as CYP2W1 substrates. In this study, we investigated whether two of these compounds, ICT2705 and ICT2706, could be activated by CYP2W1 into potent antitumor agents.Experimental Design: The cytotoxic activity of ICT2705 and ICT2706 in vitro was tested in colon cancer cell lines expressing CYP2W1, and in vivo studies with ICT2706 were conducted on severe combined immunodeficient mice bearing CYP2W1-positive colon cancer xenografts.Results: Cells expressing CYP2W1 suffer rapid loss of viability following treatment with ICT2705 and ICT2706, whereas the CYP2W1-positive human colon cancer xenografts display arrested growth in the mice treated with ICT2706. The specific cytotoxic metabolite generated by CYP2W1 metabolism of ICT2706 was identified in vitro. The cytotoxic events were accompanied by an accumulation of phosphorylated H2A.X histone, indicating DNA damage as a mechanism for cancer cell toxicity. This cytotoxic effect is most likely propagated by a bystander killing mechanism shown in colon cancer cells. Pharmacokinetic analysis of ICT2706 in mice identified higher concentration of the compound in tumor than in plasma, indicating preferential accumulation of drug in the target tissue.Conclusion: Our findings suggest a novel approach for treatment of colon cancer that uses a locoregional activation of systemically inactive prodrug by the tumor-specific activator enzyme CYP2W1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.