Saponins are plant glycosides with favorable anti-tumorigenic properties. Several saponins inhibit tumor cell growth by cell cycle arrest and apoptosis with IC50 values of up to 0.2 microM. We discuss diverse groups of saponins (dioscins, saikosaponins, julibrosides, soy saponins, ginseng saponins and avicins) investigated in relation to tumor therapy and focus on cellular and systemic mechanisms of tumor cell growth inhibition both in vitro and in vivo. The review also describes saponins in combination with conventional tumor treatment strategies, which result in improved therapeutic success. Some combinations of saponins and anti-tumorigenic drugs induce synergistic effects with potentiated growth inhibition.
Polysialic acid (polySia), an α-2,8-glycosidically linked polymer of sialic acid, is a developmentally regulated post-translational modification predominantly found on NCAM (neuronal cell adhesion molecule). Whilst high levels are expressed during development, peripheral adult organs do not express polySia-NCAM. However, tumours of neural crest-origin re-express polySia-NCAM: its occurrence correlates with aggressive and invasive disease and poor clinical prognosis in different cancer types, notably including small cell lung cancer (SCLC), pancreatic cancer and neuroblastoma. In neuronal development, polySia-NCAM biosynthesis is catalysed by two polysialyltransferases, ST8SiaII and ST8SiaIV, but it is ST8SiaII that is the prominent enzyme in tumours. The aim of this study was to determine the effect of ST8SiaII inhibition by a small molecule on tumour cell migration, utilising cytidine monophosphate (CMP) as a tool compound. Using immunoblotting we showed that CMP reduced ST8iaII-mediated polysialylation of NCAM. Utilizing a novel HPLC-based assay to quantify polysialylation of a fluorescent acceptor (DMB-DP3), we demonstrated that CMP is a competitive inhibitor of ST8SiaII (K i = 10 µM). Importantly, we have shown that CMP causes a concentration-dependent reduction in tumour cell-surface polySia expression, with an absence of toxicity. When ST8SiaII-expressing tumour cells (SH-SY5Y and C6-STX) were evaluated in 2D cell migration assays, ST8SiaII inhibition led to significant reductions in migration, while CMP had no effect on cells not expressing ST8SiaII (DLD-1 and C6-WT). The study demonstrates for the first time that a polysialyltransferase inhibitor can modulate migration in ST8SiaII-expressing tumour cells. We conclude that ST8SiaII can be considered a druggable target with the potential for interfering with a critical mechanism in tumour cell dissemination in metastatic cancers.
Saponins are a group of plant glycosides consisting of a steroid or triterpenoid aglycone to which one or more sugar chains are attached. They exhibit cell membrane-permeabilizing properties and, thus, have been investigated for their therapeutic potential. Recently, at a non-permeabilizing concentration saponinum album from Gypsophila paniculata L. has been described to enhance the cytotoxicity of a chimeric toxin in a cell culture model. To elucidate whether this enhancing effect is also mediated by other saponins, we analyzed the ability of seven different saponins to enhance the cytotoxicity of a targeted chimeric toxin. The chimeric toxin is composed of saporin, a plant ribosome-inactivating toxin, a cleavable adapter, and human epidermal growth factor (EGF). Cytotoxicity on EGF receptor (EGFR)-bearing cells was analyzed both alone and after combined application of saponin and chimeric toxin. Only two of the tested saponins, quillajasaponin and saponinum album, enhanced cytotoxicity by more than 1,000-fold, whereas the enhancement factors of the other saponins were only approximately 10-fold. In contrast to saponinum album, quillajasaponin enhanced the cytotoxicity both on control cells lacking EGFR and on target cells, indicating that, in this case, the enhancement is not target cell receptor specific. This is also the case for some of the saponins with low enhancement factors. Saponinum album resulted in a more than 13,600-fold receptor-specific enhancement, decreasing the 50% inhibitory concentration (IC(50)) from 2.4 nM to 0.18 pM, which renders it the best option to promote saporin-3-based drug uptake while retaining specificity for the EGFR.
Prostate cancer is the third leading cause of male cancer deaths in the developed world. The current lack of highly specific detection methods and efficient therapeutic agents for advanced disease have been identified as problems requiring further research. The integrins play a vital role in the cross-talk between the cell and extracellular matrix, enhancing the growth, migration, invasion and metastasis of cancer cells. Progression and metastasis of prostate adenocarcinoma is strongly associated with changes in integrin expression, notably abnormal expression and activation of the β3 integrins in tumour cells, which promotes haematogenous spread and tumour growth in bone. As such, influencing integrin cell expression and function using targeted therapeutics represents a potential treatment for bone metastasis, the most common and debilitating complication of advanced prostate cancer. In this review, we highlight the multiple ways in which RGD-binding integrins contribute to prostate cancer progression and metastasis, and identify the rationale for development of multi-integrin antagonists targeting the RGD-binding subfamily as molecularly targeted agents for its treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.