BackgroundOtitis media (OM) is amongst the most common childhood diseases and is associated with multiple microbial pathogens within the middle ear. Global and temporal monitoring of predominant bacterial pathogens is important to inform new treatment strategies, vaccine development and to monitor the impact of vaccine implementation to improve progress toward global OM prevention.MethodsA systematic review of published reports of microbiology of acute otitis media (AOM) and otitis media with effusion (OME) from January, 1970 to August 2014, was performed using PubMed databases.ResultsThis review confirmed that Streptococcus pneumoniae and Haemophilus influenzae, remain the predominant bacterial pathogens, with S. pneumoniae the predominant bacterium in the majority reports from AOM patients. In contrast, H. influenzae was the predominant bacterium for patients experiencing chronic OME, recurrent AOM and AOM with treatment failure. This result was consistent, even where improved detection sensitivity from the use of polymerase chain reaction (PCR) rather than bacterial culture was conducted. On average, PCR analyses increased the frequency of detection of S. pneumoniae and H. influenzae 3.2 fold compared to culture, whilst Moraxella catarrhalis was 4.5 times more frequently identified by PCR. Molecular methods can also improve monitoring of regional changes in the serotypes and identification frequency of S. pneumoniae and H. influenzae over time or after vaccine implementation, such as after introduction of the 7-valent pneumococcal conjugate vaccine.ConclusionsGlobally, S. pneumoniae and H. influenzae remain the predominant otopathogens associated with OM as identified through bacterial culture; however, molecular methods continue to improve the frequency and accuracy of detection of individual serotypes. Ongoing monitoring with appropriate detection methods for OM pathogens can support development of improved vaccines to provide protection from the complex combination of otopathogens within the middle ear, ultimately aiming to reduce the risk of chronic and recurrent OM in vulnerable populations.
Increasing application of information technology including web-based lectures and live-lecture recording appears to have many advantages for undergraduate nursing education. These include greater flexibility, opportunity for students to review content on demand and the improved academic management of increasing class sizes without significant increase in physical infrastructure. This study performed a quasi-experimental comparison between two groups of nursing students undertaking their first anatomy and physiology course, where one group was also provided access to streaming of recorded copies of the live lectures and the other did not. For the course in which recorded lectures were available student feedback indicated overwhelming support for such provision with 96% of students having accessed recorded lectures. There was only a weak relationship between access of recorded lectures and overall performance in the course. Interestingly, the nursing students who had access to the recorded lectures demonstrated significantly poorer overall academic performance (P < 0.001). Although this study did not specifically control for student demographics or other academic input, the data suggests that provision of recorded lectures requires improved and applied time management practices by students and caution on the part of the academic staff involved.
Otitis media typically presents as either acute otitis media (AOM), with symptoms including fever, otalgia, otorrhoea or irritability and short duration; or as otitis media with effusion (OME), which is often asymptomatic and characterised by accumulation of fluid in the middle ear. Diagnostic certainty of otitis media is challenging, given the young age of patients and variability of symptoms. Otitis media predominantly occurs as coincident to viral upper respiratory tract infections and/or bacterial infections. Common viruses that cause upper respiratory tract infection are frequently associated with AOM and new‐onset OME. These include respiratory syncytial virus, rhinovirus, adenovirus, parainfluenza and coronavirus. Predominant bacteria that cause otitis media are Streptococcus pneumoniae, Moraxella catarrhalis, and non‐typeable Haemophilus influenzae. Antibiotic therapy does not significantly benefit most patients with AOM, but long‐term prophylactic antibiotic therapy can reduce the risk of otitis media recurrence among children at high risk. In Australia, 84% of AOM is treated with antibiotic therapy, which contributes to development of antibiotic resistance. Vaccine development is a key future direction for reducing the world burden of otitis media, but requires polymicrobial formulation and ongoing monitoring and modification to ensure sustained reduction in disease burden.
Respiratory infections caused by Pseudomonas aeruginosa are a major clinical problem globally, particularly for patients with chronic pulmonary disorders, such as those with cystic fibrosis (CF), non-CF bronchiectasis (nCFB) and severe chronic obstructive pulmonary disease (COPD). In addition, critically ill and immunocompromised patients are also at significant risk of P. aeruginosa infection. For almost half a century, research efforts have focused toward development of a vaccine against infections caused by P. aeruginosa, but a licensed vaccine is not yet available. Significant advances in identifying potential vaccine antigens have been made. Immunisations via both the mucosal and systemic routes have been trialled in animal models and their effectiveness in clearing acute infections demonstrated. The challenge for translation of this research to human applications remains, since P. aeruginosa infections in the human respiratory tract can present both as an acute or chronic infection. In addition, immunisation prior to infection may not be possible for many patients with CF, nCFB or COPD. Therefore, development of a therapeutic vaccine provides an alternative approach for treatment of chronic infection. Preliminary animal and human studies suggest that mucosal immunisation may be effective as a therapeutic vaccine against P. aeruginosa respiratory infections. Nevertheless, more research is needed to improve our understanding of the basic biology of P. aeruginosa and the mechanisms needed to upregulate the induction of host immune pathways to prevent infection. Recognition of variability in the host immune responses for a range of patient health conditions at risk from P. aeruginosa infection is also required to support development of a successful vaccine delivery strategy and vaccine. Activation of mucosal immune responses may provide improved efficacy of vaccination for P. aeruginosa during both acute exacerbations and chronic infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.