In many InGaN/GaN single photon emitting structures, significant contamination of the single photon stream by background emission is observed. Here, utilizing InGaN/GaN quantum dots incorporated in mesoporous distributed Bragg reflectors (DBRs) within micropillars, we demonstrate methods for the reduction of this contamination. Using the resulting devices, autocorrelation measurements were performed using a Hanbury Brown and Twiss set-up, and thus, we report a working quantum dot device in the III-nitride system utilizing mesoporous DBRs. Uncorrected g(2)(0) autocorrelation values are shown to be significantly improved when excited with a laser at longer wavelengths and lower powers. Through this optimization, we report a g(2)(0) value from a blue-emitting InGaN/GaN quantum dot of 0.126 ± 0.003 without any form of background correction.
A detailed temporal analysis of the spectral diffusion phenomenon in single photon emitting InGaN/GaN quantum dots (QDs) is performed via measurements of both time-varying emission spectra and single photon emission intensity autocorrelation times. Excitation dependent phenomena are investigated via the optical excitation of carriers into the GaN barrier material and also directly into InGaN. Excitation into InGaN reveals that the fastest environmental fluctuations occur on timescales as long as a few hundreds of nanoseconds: an order of magnitude longer than previously measured in GaN QDs. Such long time scales may in future allow for the generation of indistinguishable photons in spite of the fact that the experimentally measured linewidths are broad.
The digital image correlation (DIC) of speckle patterns obtained by vapour-assisted gold remodelling at 200 -350°C has already been used to map plastic strains with submicron resolution. However, it has not so far proved possible to use such patterns for testing at high temperatures. Here we demonstrate how a gold speckle pattern can be made that is stable at 700°C, to study deformation in a commercial TiAl alloy (Ti-45Al-2Nb-2Mn(at%)-0.8 vol% TiB 2 ). The pattern is made up of a uniformly sized random array of Au islands as small as 15 nm in diameter, depending on reconstruction parameters, with a sufficiently small spacing to be suitable for nano-scale, nDIC, strain mapping at a subset size of 60 × 60 nm 2 . It can be used at temperatures up to 700°C for many hours, for high cycle fatigue testing for instance. There is good particle attachment to the substrate. It can withstand ultra-sound cleaning, is thermally stable and has a high atomic number contrast for topography-free backscatter electron imaging.
Porosification of nitride semiconductors provides a new paradigm for advanced engineering of the properties of optoelectronic materials. Electrochemical etching creates porosity in doped layers while leaving undoped layers undamaged, allowing the realization of complex three-dimensional porous nanostructures, potentially offering a wide range of functionalities, such as in-distributed Bragg reflectors. Porous/non-porous multilayers can be formed by etching the whole, as-grown wafers uniformly in one simple process, without any additional processing steps. The etch penetrates from the top down through the undoped layers, leaving them almost untouched. Here, atomic-resolution electron microscopy is used to show that the etchant accesses the doped layers via nanometer-scale channels that form at dislocation cores and transport the etchant and etch products to and from the doped layer, respectively. Results on AlGaN and non-polar GaN multilayers indicate that the same mechanism is operating, suggesting that this approach may be applicable in a range of materials.
Transmission electron microscopy (TEM) is a central technique for the characterisation of materials at the atomic scale. However, it requires the sample to be thin enough to be electron transparent, imposing strict limitations when studying thick structures in plan-view. Here we present a method for sequential plan-view TEM that allows one to image complex structures at various depths. The approach consists of performing an iterative series of front-side ion milling followed by TEM imaging. We show it is possible to image how the sample properties vary with depth up to several microns below the surface, with no degradation of the sample and imaging conditions throughout the experiment. We apply this approach to 3D cavities in mesoporous GaN distributed Bragg reflectors, demonstrating the ability to characterise the morphology of the pores, local crystal features and chemical composition through the multilayer structure. The same workflow can be applied to a variety of complex micron-scale systems which are by nature too thick for standard TEM analysis, and can also be adapted for profiling samples in cross-section.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.