In general, physical exercise appears to have favorable effects on the skeleton. However, a few recent reports have described negative effects, including reduced bone density (BMD) and high bone turnover in runners. The aim of our study was to compare endurance runners to controls with respect to BMD at different sites and ultrasound transmission through the peripheral skeleton, and to use PTH, total serum calcium, and biochemical markers of bone metabolism as a complement in evaluating the effects of endurance running on bone. Thirty runners (mean age 32 years, range 19-54 years) participated in the study. Their main form of training consisted of endurance running at moderate intensity for about 7 hours (range 2-12 hours) per week, and they had been active in their sport for about 12 years (range 1-21 years). For a comparison, 30 age- and sex-matched population based controls were investigated. BMD values, measured by dual energy X-ray absorptiometry (DXA), were higher in runners than in controls for the total body (3.6%; P = 0.03), legs (9.6%; P = 0. 001), femoral neck (10.0%; P = 0.01), trochanter (9.9%; P = 0.01), and Wards triangle (11.8%; P = 0.02), but not in the lumbar spine or in the forearm measured by single energy X-ray absorptiometry (SXA). The quantitative ultrasound measurement of the calcaneus also revealed higher values in runners than in controls for both broadband ultrasound attenuation (9.2%; P = 0.002) and speed of sound (3.1%; P = 0.0001). At all sites, BMD was related to ultrasound measurements in controls, but no such relationship was evident in runners. Concentrations of parathyroid hormone (PTH) were lower (23.2%; P = 0.02) in runners than in controls, whereas total serum calcium concentrations were slightly higher (3.0%; P = 0.003). The levels of PICP (bone formation) and ICTP (bone resorption) in serum were lower (18.0%; P = 0.03 and 22.2%; P = 0.004, respectively) in runners than in controls, but no differences were seen for osteocalcin or bone specific alkaline phosphatase (b-ALP). In conclusion, BMD at the focus of strain for running, that is, the legs, is higher in endurance runners when compared to matched controls. Low bone turnover in runners, indicated by lower levels of PTH and biochemical markers of bone metabolism, point to an influence of endurance running at the cellular level.
Understanding the reaction of bone to physical exercise is important for the development of strategies to increase and maintain bone mass. In this study the aim was to investigate the relationship among exercise intensity, physical capacity, and the biochemical responses, estimated by measuring biochemical markers of bone metabolism in serum. As a complement to the circulating concentrations we also accounted for the plasma volume shifts during and after exercise. The study included 10 men and 10 women, mean age 29 years, with a wide range of physical capacity, who performed a standardized running exercise test on a motor-driven treadmill with loads corresponding to 47 and 76% of VO2 max (maximal oxygen uptake) followed by a maximal effort until exhaustion. Total work time was about 35 minutes. Venous blood samples were drawn at rest, after each load, and after 30 minutes and 24 hours of recovery. The reductions in plasma volume during exercise were 4.3% (P < 0.05) and 15.1% (P < 0.001) whereas after 24 hours in recovery there was an expansion of 7.5% (P < 0.001). There were marked, intensity-related, increases of PICP and tALP concentrations (P < 0.001) during exercise. Since these were of the order of plasma volume reduction they did not correspond to a change in the calculated circulating amount (content). However, as the concentrations returned to basal during recovery, the total circulating amounts were increased at this point (P < 0.05). Osteocalcin was also increased during recovery (P < 0.01), although concentrations were unchanged during the entire study. The amount (P < 0.001) and concentration (P < 0. 05) of ICTP were also increased during follow-up. Serum PTH concentrations rose (P < 0.05) in proportion to the intensity of exercise and remained elevated during recovery. The subjects' VO2 max demonstrated positive relationships to the biochemical responses to exercise in bone and BMD of the legs, and a negative relationship to basal PTH levels. Bone turnover and PTH secretion was stimulated by exercise, and low basal levels of PTH and high BMD were induced by a high level of physical fitness. These observations correlate well with the favorable effects of exercise and training on bone mass.
The purpose of this study was to evaluate the responses of hormones, growth factors, and biomarkers involved in bone and muscle metabolism during exercise and in recovery. One leg knee-extension exercise and concomitant sampling from the artery and vein were performed. In 12 healthy individuals (6 men and 6 women; age 21-36 years) blood was drawn from the femoral artery and vein at rest, after 10 minutes warm-up, after 15 minutes work at 61% of peak one leg VO2, and after 5 minutes work at peak one leg VO2, as well as 5, 30, and 60 minutes in recovery. Blood flow in the femoral vein was measured using the thermodilution technique. Arteriovenous differences were measured over working thigh for growth hormone (GH), insulin-like growth factor I (IGF-I), insulin-like growth factor binding protein 3 (IGF BP3), parathyroid hormone (PTH) and bone biomarkers, i.e., the carboxyterminal propeptide of type I procollagen (PICP), the carboxyterminal cross-linked telopeptide of type I collagen (ICTP), osteocalcin, and bone-specific alkaline phosphatase (b-ALP). There was an uptake of GH (3.1 +/- 1.2 mU x min(-1), P < 0.001; mean +/- SE) over thigh during exercise and a release of IGF-I at the end of exercise (60 +/- 36 microg x min(-1); P < 0.01). PICP was also released after the maximal exercise (23 +/- 12 microg x min(-1); P < 0.01) as well as ICTP (0.5 +/- 0.3 microg x min(-1); P < 0.05) and b-ALP (0.2 +/- 0.1 microkat x min(-1); P < 0.05). Osteocalcin, IGF BP3, and PTH revealed no clearcut pattern. In the present study, exercise induces endocrine changes which point to anabolic effects on muscle and bone tissue.
Lifetime occupational and leisure time activities were assessed by a questionnaire in order to evaluate their relationship to bone mass measurements and biochemical markers of bone metabolism in a population of 61 women and 61 men, randomly selected from a Swedish population register, to represent ages between 22 and 85 years. We also considered possible confounders by using questions about smoking habits, milk consumption, hormone replacement therapy (HRT), and menopausal age. Bone mineral density (BMD) and bone mineral content (bone mass, BMC) of the total body, lumbar spine, and proximal femur (neck, trochanter, Ward's triangle) were measured by dual energy X-ray absorptiometry (DXA), and BMD of the forearm with single energy X-ray absorptiometry (SXA). In addition, both DXA and SXA provided information on bone area. Quantitative ultrasound measurements (QUS) at the heel were performed to assess the speed of sound (SOS) and broadband ultrasound attenuation (BUA). Fasting blood samples were analyzed for biochemical markers of bone metabolism as well as parathyroid hormone (PTH) and total serum calcium. After adjustment for confounding factors, neither BMD nor QUS measurements were consistently related to lifetime leisure time or occupational activities; nor were there any consistent patterns relating biochemical markers of bone metabolism to bone mass measurements. However, physical activity seemed to influence bone mass, area, and width more than density. In men, high levels of leisure time activity were associated with raised values for lumbar spine area (6.2%) and width (3.3%) as well as for femoral neck area (5.5%) compared with their low activity counterpart. Men exposed to high levels of occupational activity demonstrated lower lumbar spine BMD (10.9%) and area (5.3%) than men with low activity levels. Within an unselected Swedish population, estimation of lifetime occupational and sport activities as well as bedrest, using a questionnaire, demonstrated no major effects on bone density. However, the association between high levels of lifetime activity and raised values for bone mass, area, and width indicate that geometrical changes in bone may provide better estimations of mechanically induced bone strength than bone density, at least in men.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.