Edited by Tamas DalmayMGP is a protein that was initially associated with the inhibition of calcification in skeleton, soft tissues, and arteries, but more recently also implicated in cancer. In breast cancer, higher levels of MGP mRNA were associated with poor prognosis, but since this deregulation was never demonstrated at the protein level, we postulated the involvement of a post-transcriptional regulatory mechanism. In this work we show that MGP is significantly repressed by miR-155 in breast cancer MCF-7 cells, and concomitantly there is a stimulation of cell proliferation and cell invasiveness. This study brings new insights into the putative involvement of MGP and oncomiR-155 in breast cancer, and may contribute to develop new therapeutic strategies.
Paget's disease of bone (PDB) is the second most frequent metabolic bone disease after osteoporosis. Genetic factors play an important role in PDB, but to date PDB causing mutations were identified only in the Sequestosome 1 gene at the PDB3 locus. OPTN has been recently associated with PDB, however little is known about the effect of genetic variants in this gene in PDB pathophysiology. By sequencing OPTN in SQSTM1 non-carriers PDB patients we found 16 SNPs in regulatory, coding and non-coding regions. One of those was found to be associated with PDB in our cohort - rs2234968. Our results show that rs2238968 effect may be explained by a change in OPTN splicing that give rise to a predicted truncated protein. We also performed functional studies on the variants located in OPTN promoter - rs3829923 and the rare variant -9906 - to investigate putative regulators of OPTN. Our results show that OPTN expression seems to be regulated by SP1, RXR, E47, and the E2F family. In conclusion, our work suggests a potential pathophysiological role of SNPs in OPTN, giving a new perspective about the regulatory mechanisms of this gene. Ultimately we discovered a new variant associated with PDB in OPTN, reinforcing the relevance of this gene for the development of this bone disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.