Electrical coupling via gap junctions is an abundant phenomenon in the mammalian retina and occurs in all major cell types. Gap junction channels are assembled from different connexin subunits, and the connexin composition of the channel confers specific properties to the electrical synapse. In the mouse retina, gap junctions were demonstrated between intrinsically photosensitive ganglion cells and displaced amacrine cells but the underlying connexin remained undetermined. In the primary rod pathway, gap junctions play a crucial role, coupling AII amacrine cells among each other and to ON cone bipolar cells. Although it has long been known that connexin36 and connexin45 are necessary for the proper functioning of this most sensitive rod pathway, differences between homocellular AII/AII gap junctions and AII/ON bipolar cell gap junctions suggested the presence of an additional connexin in AII amacrine cells. Here, we used a connexin30.2-lacZ mouse line to study the expression of connexin30.2 in the retina. We show that connexin30.2 is expressed in intrinsically photosensitive ganglion cells and AII amacrine cells. Moreover, we tested whether connexin30.2 and connexin36—both expressed in AII amacrine cells—are able to interact with each other and are deposited in the same gap junctional plaques. Using newly generated anti-connexin30.2 antibodies, we show in HeLa cells that both connexins are indeed able to interact and may form heteromeric channels: both connexins were co-immunoprecipitated from transiently transfected HeLa cells and connexin30.2 gap junction plaques became significantly larger when co-expressed with connexin36. These data suggest that connexin36 is able to form heteromeric gap junctions with another connexin. We hypothesize that co-expression of connexin30.2 and connexin36 may endow AII amacrine cells with the means to differentially regulate its electrical coupling to different synaptic partners.
Horizontal cells in the mouse retina are of the axon-bearing B-type and contribute to the gain control of photoreceptors and to the center-surround organization of bipolar cells by providing feedback and feedforward signals to photoreceptors and bipolar cells, respectively. Horizontal cells form two independent networks, coupled by dendro-dendritic and axo-axonal gap junctions composed of connexin57 (Cx57). In Cx57-deficient mice, occasionally the residual tracer coupling of horizontal cell somata was observed. Also, negative feedback from horizontal cells to photoreceptors, potentially mediated by connexin hemichannels, appeared unaffected. These results point to the expression of a second connexin in mouse horizontal cells. We investigated the expression of Cx50, which was recently identified in axonless A-type horizontal cells of the rabbit retina. In the mouse retina, Cx50-immunoreactive puncta were predominantly localized on large axon terminals of horizontal cells. Electron microscopy did not reveal any Cx50-immunolabeling at the membrane of horizontal cell tips invaginating photoreceptor terminals, ruling out the involvement of Cx50 in negative feedback. Moreover, Cx50 colocalized only rarely with Cx57 on horizontal cell processes, indicating that both connexins form homotypic rather than heterotypic or heteromeric gap junctions. To check whether the expression of Cx50 is changed when Cx57 is lacking, we compared the Cx50 expression in wildtype and Cx57-deficient mice. However, Cx50 expression was unaffected in Cx57-deficient mice. In summary, our results indicate that horizontal cell axon terminals form two independent sets of homotypic gap junctions, a feature which might be important for light adaptation in the retina.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.