Fowl adenoviruses (FAdVs) are common in broiler operations, and the most frequently isolated FAdVs belong to serotypes 1, 8, and 11. Serotype 1 viruses are considered nonpathogenic. While some serotype 8 and 11 viruses cause inclusion body hepatitis (IBH), these virus serotypes can also be isolated from non-IBH cases. The fiber protein is one of the major constituents of the adenoviral capsid, involved in virus entry, and it has been implicated in the variation of virulence of FAdVs. The fiber gene sequences of four FAdV-8 and four FAdV-11 isolates from both IBH and non-IBH cases were determined and analyzed for a possible association of the fiber gene sequence in virulence. The fiber protein can be divided into tail, shaft, and head domains comprising some specific features. The conserved "RKRP" sequence motif (aa 17-aa 20) fit the consensus sequence predicted for the nuclear localization signal, while the "VYPF" motif (aa 53-aa 56), involved in the penton base interaction, was also found. Similar to mammalian adenoviruses, 17 pseudo-repeats with an average length of 16 aa were detected in the FAdV-8 fiber shaft region, while 20 pseudo-repeats with an average length of 18 aa were found in FAdV-11 fibers. There was a 144-147 nt difference between the fiber genes of the two FAdV serotypes. In the shaft region, the TLWT motif that marks the beginning of the fiber head domain of the mastadenovirus was not evident among examined FAdVs. The FAdV-11 isolates had 99.1 % aa sequence identity and 99.3 % similarity to each other, and there was no conserved aa substitution within the fibers. The FAdV-8 fiber proteins showed an overall lower, 89 % aa sequence identity and 93.4 % similarity, to each other and 22 nonsynonymous mutations were detected. Virulence markers were not detected in the analyzed fiber gene sequences of the different pathotypes of the two FAdV serotypes.
Hydropericardium-hepatitis syndrome (HHS), a recently emerged disease of chickens, is caused by some strains of fowl adenovirus serotype 4 (FAdV-4). In this study, a Canadian FAdV-4 isolate, designated as FAdV-4 ON1, was evaluated for pathogenicity after oral and intramuscular (im) infection of specific pathogen free (SPF) chickens. Pathogenicity was evaluated by observation of clinical signs and gross and histological lesions. The highest viral DNA copy numbers, irrespective of the inoculation route, were detected in the cecal tonsils. Virus titers in cloacal swabs collected over the entire study period were compared between the orally and im inoculated chickens, and the difference in titers between the two groups was significant (P<0.001), the oral group had a higher rank. The antibody response of infected chickens tested by an adenovirus-specific ELISA showed a statistically significant (P<0.001) difference between the orally and im inoculated chickens. The im inoculated chickens had higher values than birds inoculated orally (P<0.001). Serum samples from both groups collected at 14 days post-infection completely neutralized FAdV-4 ON1. In addition, the effects of FAdV-4 ON1 infection on transcription of a number of avian cytokines were studied in vivo. The expression of interferon (IFN)-γ and interleukin (IL)-10 in the liver was induced at early times after infection. This FAdV-4 ON1 potentially could be used as a live vaccine against HHS and developed as vaccine vector. The GenBank/EMBL/DDBJ accession number for the FAdV-4 ON1 sequence is GU188428.
BackgroundData about molecular diversity of commonly circulating type A influenza viruses in Ontario swine are scarce. Yet, this information is essential for surveillance of animal and public health, vaccine updates, and for understanding virus evolution and its large-scale spread.MethodsThe study population consisted of 21 swine herds with clinical problems due to respiratory disease. Nasal swabs from individual pigs were collected and tested by virus isolation in MDCK cells and by rtRT-PCR. All eight segments of 10 H3N2 viruses were sequenced using high-throughput sequencing and molecularly characterized.ResultsWithin-herd prevalence ranged between 2 and 100%. Structurally, Ontario H3N2 viruses could be classified into three different groups. Group 1 was the most similar to the original trH3N2 virus from 2005. Group 2 was the most similar to the Ontario turkey H3N2 isolates with PB1 and NS genes originating from trH3N2 virus and M, PB2, PA and NP genes originating from the A(H1N1)pdm09 virus. All Group 3 internal genes were genetically related to A(H1N1)pdm09. Analysis of antigenic sites of HA1 showed that Group 1 had 8 aa changes within 4 antigenic sites, A(1), B(3), C(2) and E(2). The Group 2 viruses had 8 aa changes within 3 antigenic sites A(3), B(3) and C(2), while Group 3 viruses had 4 aa changes within 3 antigenic sites, B(1), D(1) and E(2), when compared to the cluster IV H3N2 virus [A/swine/Ontario/33853/2005/(H3N2)].ConclusionsThe characterization of the Ontario H3N2 viruses clearly indicates reassortment of gene segments between the North American swine trH3N2 from cluster IV and the A(H1N1)pdm09 virus.Electronic supplementary materialThe online version of this article (doi:10.1186/s12985-014-0194-z) contains supplementary material, which is available to authorized users.
Commercial production of swine often involves raising animals in large groups through the use of multi-stage production systems. In such systems, pigs can experience different degrees of contact with animals of the same or different ages. Population size and degree of contact can greatly influence transmission of endemic pathogens, including influenza A virus (IAV). IAV can display high genetic variability, which can further complicate population-level patterns. Yet, the IAV transmission in large multi-site swine production systems has not been well studied. The objectives of this study were to describe the IAV circulation in a multi-source nursery facility and identify factors associated with infection in nursery pigs. Pigs from five sow herds were mixed in one all-in/all-out nursery barn, with 81 and 75 pigs included in two longitudinal studies. Virus isolation was performed in Madin-Darby canine kidney cells and serology was performed using hemagglutination inhibition assays. Risk factor analysis for virological positivity was conducted using logistic regression and stratified Cox’s regression for recurrent events. In Study 1, at ≈30 days post-weaning, 100% of pigs were positive, with 43.2% of pigs being positive recurrently over the entire study period. In study 2, 48% of pigs were positive at the peak of the outbreak, and 10.7% were positive recurrently over the entire study period. The results suggest that IAV can circulate during the nursery phase in an endemic pattern and that the likelihood of recurrent infections was associated in a non-linear way with the level of heterologous (within-subtype) maternal immunity (p < 0.05). High within-pen intracluster correlation coefficients (> 0.75) were also observed for the majority of sampling times suggesting that pen-level factors played a role in infection dynamics in this study.Electronic supplementary materialThe online version of this article (doi:10.1186/s13567-017-0466-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.