Fire is a major disturbance agent in the boreal forest, influencing many current and future ecosystem conditions and services. Surprisingly few studies have attempted to improve the accuracy of fire-event reconstructions even though the estimates of the occurrence of past fires may be biased, influencing the reliability of the models employing those data (e.g. C stock, cycle). This study aimed to demonstrate how three types of fire proxies – fire scars from tree rings, sedimentary charcoal and, for the first time in this context, fungal spores of Neurospora – can be integrated to achieve a better understanding of past fire dynamics. By studying charcoal and Neurospora from sediment cores from forest hollows, and the fire scars from tree rings in their surroundings in the southern Fennoscandian and western Russian boreal forest, we produced composite fire-event data sets and fire-event frequencies, and estimated fire return intervals. Our estimates show that the fire return interval varied between 126 and 237 years during the last 11,000 years. The highest fire frequency during the 18th–19th century can be associated with the anthropogenic influence. Importantly, statistical tests revealed a positive relationship between other fire event indicators and Neurospora occurrence allowing us to pinpoint past fire events at times when the sedimentary charcoal was absent, but Neurospora were abundant. We demonstrated how fire proxies with different temporal resolution can be linked, providing potential improvements in the reliability of fire history reconstructions from multiple proxies.
We report pollen‐stratigraphical evidence for an abrupt, episodic and widespread population decline of alder (Alnus), one of the most common boreal tree genera, during the medieval period in northern Europe. Decline of alder pollen values was observed both in forest hollow pollen records reflecting local vegetation of pristine forests and in pollen percentage and pollen accumulation data from lake sediments. The event began roughly at AD 600 and the recovery took place at AD 1000. Human impact is an unlikely cause because the decline is specific to alder and there is no evidence for a concurrent episode of human impact. It is possible that the decline was caused or influenced by a severe drought. Another potential cause is a sudden, widespread pathogen outbreak, especially as alder is known to be sensitive to the impacts of fungal pathogens such as the oomycete Phytophthora.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.