The fields of tissue engineering and regenerative medicine aim at promoting the regeneration of tissues or replacing failing or malfunctioning organs, by means of combining a scaffold/support material, adequate cells and bioactive molecules. Different materials have been proposed to be used as both three-dimensional porous scaffolds and hydrogel matrices for distinct tissue engineering strategies. Among them, polymers of natural origin are one of the most attractive options, mainly due to their similarities with the extracellular matrix (ECM), chemical versatility as well as typically good biological performance. In this review, the most studied and promising and recently proposed naturally derived polymers that have been suggested for tissue engineering applications are described. Different classes of such type of polymers and their blends with synthetic polymers are analysed, with special focus on polysaccharides and proteins, the systems that are more inspired by the ECM. The adaptation of conventional methods or non-conventional processing techniques for processing scaffolds from natural origin based polymers is reviewed. The use of particles, membranes and injectable systems from such kind of materials is also overviewed, especially what concerns the present status of the research that should lead towards their final application. Finally, the biological performance of tissue engineering constructs based on natural-based polymers is discussed, using several examples for different clinically relevant applications.
We report here the self-assembly of macroscopic sacs and membranes at the interface between two aqueous solutions, one containing a megadalton polymer and the other, small self-assembling molecules bearing opposite charge. The resulting structures have a highly ordered architecture in which nanofiber bundles align and reorient by nearly 90 degrees as the membrane grows. The formation of a diffusion barrier upon contact between the two liquids prevents their chaotic mixing. We hypothesize that growth of the membrane is then driven by a dynamic synergy between osmotic pressure of ions and static self-assembly. These robust, self-sealing macroscopic structures offer opportunities in many areas, including the formation of privileged environments for cells, immune barriers, new biological assays, and self-assembly of ordered thick membranes for diverse applications.
Self-assembly is a ubiquitous process in biology where it plays numerous important roles and underlies the formation of a wide variety of complex biological structures. Over the past two decades, materials scientists have aspired to exploit nature's assembly principles to create artificial materials, with hierarchical structures and tailored properties, for the fabrication of functional devices. Toward this goal, both biological and synthetic building blocks have been subject of extensive research in self-assembly. In fact, molecular self-assembly is becoming increasingly important for the fabrication of biomaterials because it offers a great platform for constructing materials with high level of precision and complexity, integrating order and dynamics, to achieve functions such as stimuli-responsiveness, adaptation, recognition, transport, and catalysis. The importance of peptide self-assembling building blocks has been recognized in the last years, as demonstrated by the literature available on the topic. The simple structure of peptides, as well as their facile synthesis, makes peptides an excellent family of structural units for the bottom-up fabrication of complex nanobiomaterials. Additionally, peptides offer a great diversity of biochemical (specificity, intrinsic bioactivity, biodegradability) and physical (small size, conformation) properties to form self-assembled structures with different molecular configurations. The motivation of this review is to provide an overview on the design principles for peptide self-assembly and to illustrate how these principles have been applied to manipulate their self-assembly across the scales. Applications of self-assembling peptides as nanobiomaterials, including carriers for drug delivery, hydrogels for cell culture and tissue repair are also described.
ature uses self-assembly to create a widespread variety of complex structures with elaborate geometries and outstanding properties 1 such as hierarchical order, adaptability, selfhealing and bioactivity. Developing new bioinspired processes based on dynamic self-assembly could facilitate the fabrication of synthetic three-dimensional (3D) materials with enhanced complexity, dynamic properties and functionality 2 . Proteins are particularly attractive building blocks because of their versatility and biofunctionality 3 . Elastin-like polypeptides (ELPs) 4 are recombinant proteins that have generated great interest 5 as a result of their modular structure, bioactivity, ease of design and production, and the possibility to create robust and elastic materials 5,6 . ELPs allow for a tunable molecular design 7 and are based on the tropoelastin recurrent motif Val-Pro-Gly-X-Gly (VPGXG), in which X is any amino acid other than proline 7 . This repeating pentapeptide provides ELPs with a thermoresponsive behaviour. Below a critical transition temperature (T t ), the ELP molecule undergoes a reversible-phase transition wherein the protein is soluble in aqueous solution and becomes highly solvated, surrounded by clatharate-like water structures. Above the T t , the hydrophobic domains dehydrate and the protein chain hydrophobically collapses and aggregates to form a phaseseparated state 8 .The use of natural and synthetic proteins to create functional materials has been hindered by the difficulty in controlling their conformation and nanoscale assembly with the precision required to form macroscopic materials. This limitation has driven the development of simpler and more-predictable peptide-based materials 9,10 . Peptide amphiphiles (PAs), for example, are synthetic molecules that can self-assemble into nanofibres and create functional 3D hydrogels that emulate the fibrous architecture of the extracellular matrix (ECM) 11,12 . Nonetheless, most peptide and/or protein materials are formed through equilibrium-based self-assembly approaches that are capable of generating stable supramolecular structures, but with limited hierarchy and spatiotemporal control, which has hindered their functionality 2 .Novel approaches based on the dynamic self-assembly of inorganic building blocks [13][14][15] , actin self-organization 16 and the combination of top-down processes with peptide self-assembly have been reported recently 17 . In particular, Stupp and co-workers have described a self-assembling membrane system obtained through strong electrostatic interactions between PAs and oppositely charged polysaccharides 18 . However, the possibility to exploit the unique structural and functional properties of proteins to create dynamic hierarchical materials remains an elusive target. In this study, we attempt to overcome this hurdle by using self-assembling peptides to promote protein conformational changes and guide their assembly into complex, yet functional, materials. We report the discovery and development of a protein/peptide system t...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.