Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010-2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.
Abstract. Our knowledge of the distribution of mercury concentrations in air of the Southern Hemisphere was until recently based mostly on intermittent measurements made during ship cruises. In the last few years continuous mercury monitoring has commenced at several sites in the Southern Hemisphere, providing new and more refined information. In this paper we compare mercury measurements at several remote sites in the Southern Hemisphere made over a period of at least 1 year at each location. Averages of monthly medians show similar although small seasonal variations at both Cape Point and Amsterdam Island. A pronounced seasonal variation at Troll research station in Antarctica is due to frequent mercury depletion events in the austral spring. Due to large scatter and large standard deviations of monthly average median mercury concentrations at Cape Grim, no systematic seasonal variation could be found there. Nevertheless, the annual average mercury concentrations at all sites during the 2007-2013 period varied only between 0.85 and 1.05 ng m −3 . Part of this variability is likely due to systematic measurement uncertainties which we propose can be further reduced by improved calibration procedures. We conclude that mercury is much more uniformly distributed throughout the Southern Hemisphere than the distributions suggested by measurements made onboard ships. This finding implies that smaller trends can be detected in shorter time periods. We also report a change in the trend sign at Cape Point from decreasing mercury concentrations in 1996-2004 to increasing concentrations since 2007.
We perform global-scale inverse modeling to constrain present-day atmospheric mercury emissions and relevant physiochemical parameters in the GEOS-Chem chemical transport model. We use Bayesian inversion methods combining simulations with GEOS-Chem and ground-based Hg-0 observations from regional monitoring networks and individual sites in recent years. Using optimized emissions/parameters, GEOS-Chem better reproduces these ground-based observations and also matches regional over-water Hg-0 and wet deposition measurements. The optimized global mercury emission to the atmosphere is 5.8 Gg yr(-1). The ocean accounts for 3.2 Gg yr(-1) (55 % of the total), and the terrestrial ecosystem is neither a net source nor a net sink of Hg-0. The optimized Asian anthropogenic emission of Hg-0 (gas elemental mercury) is 650-1770 Mg yr(-1), higher than its bottom-up estimates (550-800 Mg yr(-1)). The ocean parameter inversions suggest that dark oxidation of aqueous elemental mercury is faster, and less mercury is removed from the mixed layer through particle sinking, when compared with current simulations. Parameter changes affect the simulated global ocean mercury budget, particularly mass exchange between the mixed layer and subsurface waters. Based on our inversion results, we re-evaluate the long-term global biogeochemical cycle of mercury, and show that legacy mercury becomes more likely to reside in the terrestrial ecosystem than in the ocean. We estimate that primary anthropogenic mercury contributes up to 23 % of present-day atmospheric deposition
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.