Abstract. Global models of atmospheric mercury generally assume that gas-phase OH and ozone are the main oxidants converting Hg 0 to Hg II and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br) as an alternative Hg 0 oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg 0 oxidant (Hg + Br model) and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O 3 model). We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O 3 models, we add an aqueous photochemical reduction of Hg II in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM) concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O 3 models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of Hg II deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to aCorrespondence to: C. D. Holmes (cdholmes@post.harvard.edu) net deposition flux to the Arctic of 60 Mg a −1 . Summertime events of depleted Hg 0 at Antarctic sites due to subsidence are much better simulated by the Hg + Br model. Model comparisons to observed wet deposition fluxes of mercury in the US and Europe show general consistency. However the Hg + Br model does not capture the summer maximum over the southeast US because of low subtropical Br concentrations while the Hg + OH/O 3 model does. Vertical profiles measured from aircraft show a decline of Hg 0 above the tropopause that can be captured by both the Hg + Br and Hg + OH/O 3 models, except in Arctic spring where the observed decline is much steeper than simulated by either model; we speculate that oxidation by Cl species might be responsible. The Hg + Br and Hg + OH/O 3 models yield similar global budgets for the cycling of mercury between the atmosphere and surface reservoirs, but the Hg + Br model results in a much larger fraction of mercury deposited to the Southern Hemisphere oceans.
Abstract. Mercury (Hg) is emitted to the atmosphere mainly as volatile elemental Hg 0 . Oxidation to water-soluble Hg II plays a major role in Hg deposition to ecosystems. Here, we implement a new mechanism for atmospheric Hg 0 / Hg II redox chemistry in the GEOS-Chem global model and examine the implications for the global atmospheric Hg budget and deposition patterns. Our simulation includes a new coupling of GEOS-Chem to an ocean general circulation model (MITgcm), enabling a global 3-D representation of atmosphereocean Hg 0 / Hg II cycling. We find that atomic bromine (Br) of marine organobromine origin is the main atmospheric Hg 0 oxidant and that second-stage HgBr oxidation is mainly by the NO 2 and HO 2 radicals. The resulting chemical lifetime of tropospheric Hg 0 against oxidation is 2.7 months, shorter than in previous models. Fast Hg II atmospheric reduction must occur in order to match the ∼ 6-month lifetime of Hg against deposition implied by the observed atmospheric variability of total gaseous mercury (TGM ≡ Hg 0 + Hg II (g)). We implement this reduction in GEOS-Chem as photolysis of aqueous-phase Hg II -organic complexes in aerosols and clouds, resulting in a TGM lifetime of 5.2 months against deposition and matching both mean observed TGM and its variability. Model sensitivity analysis shows that the interhemispheric gradient of TGM, previously used to infer a longer Hg lifetime against deposition, is misleading because Southern Hemisphere Hg mainly originates from oceanic emissions rather than transport from the Northern Hemisphere.The model reproduces the observed seasonal TGM variation at northern midlatitudes (maximum in February, minimum in September) driven by chemistry and oceanic evasion, but it does not reproduce the lack of seasonality observed at southern hemispheric marine sites. Aircraft observations in the lowermost stratosphere show a strong TGM-ozone relationship indicative of fast Hg 0 oxidation, but we show that this relationship provides only a weak test of Hg chemistry because it is also influenced by mixing. The model reproduces observed Hg wet deposition fluxes over North America, Europe, and China with little bias (0-30 %). It reproduces qualitatively the observed maximum in US deposition around the Gulf of Mexico, reflecting a combination of deep convection and availability of NO 2 and HO 2 radicals for second-stage HgBr oxidation. However, the magnitude of this maximum is underestimated. The relatively low observed Hg wet deposition over rural China is attributed to fast Hg II reduction in the presence of high organic aerosol concentrations. We find that 80 % of Hg II deposition is to the global oceans, reflecting the marine origin of Br and low concentrations of organic aerosols for Hg II reduction. Most of that deposition takes place to the tropical oceans due to the availability of HO 2 and NO 2 for second-stage HgBr oxidation.
Abstract. An airfreight container with automated
[1] We present results from a new global atmospheric mercury model coupled with a mixed layer slab ocean. The ocean model describes the interactions of the mixed layer with the atmosphere and deep ocean, as well as conversion between elemental, divalent, and nonreactive mercury species. Our global mean aqueous concentrations of 0.07 pM elemental, 0.80 pM reactive, and 1.51 pM total mercury agree with observations. The ocean provides a 14.1 Mmol yr À1 source of mercury to the atmosphere, at the upper end of previous estimates. Re-emission of previously deposited mercury constitutes 89% of this flux. Ocean emissions are largest in the tropics and downwind of industrial regions. Midlatitude ocean emissions display a large seasonal cycle induced by biological productivity. Oceans contribute 54% (36%) of surface atmospheric mercury in the Southern (Northern) Hemisphere. We find a large net loss of mercury to the deep ocean (8.7 Mmol yr À1 ), implying a $0.7%/year increase in deep ocean concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.