Abstract. Mercury (Hg) is emitted to the atmosphere mainly as volatile elemental Hg 0 . Oxidation to water-soluble Hg II plays a major role in Hg deposition to ecosystems. Here, we implement a new mechanism for atmospheric Hg 0 / Hg II redox chemistry in the GEOS-Chem global model and examine the implications for the global atmospheric Hg budget and deposition patterns. Our simulation includes a new coupling of GEOS-Chem to an ocean general circulation model (MITgcm), enabling a global 3-D representation of atmosphereocean Hg 0 / Hg II cycling. We find that atomic bromine (Br) of marine organobromine origin is the main atmospheric Hg 0 oxidant and that second-stage HgBr oxidation is mainly by the NO 2 and HO 2 radicals. The resulting chemical lifetime of tropospheric Hg 0 against oxidation is 2.7 months, shorter than in previous models. Fast Hg II atmospheric reduction must occur in order to match the ∼ 6-month lifetime of Hg against deposition implied by the observed atmospheric variability of total gaseous mercury (TGM ≡ Hg 0 + Hg II (g)). We implement this reduction in GEOS-Chem as photolysis of aqueous-phase Hg II -organic complexes in aerosols and clouds, resulting in a TGM lifetime of 5.2 months against deposition and matching both mean observed TGM and its variability. Model sensitivity analysis shows that the interhemispheric gradient of TGM, previously used to infer a longer Hg lifetime against deposition, is misleading because Southern Hemisphere Hg mainly originates from oceanic emissions rather than transport from the Northern Hemisphere.The model reproduces the observed seasonal TGM variation at northern midlatitudes (maximum in February, minimum in September) driven by chemistry and oceanic evasion, but it does not reproduce the lack of seasonality observed at southern hemispheric marine sites. Aircraft observations in the lowermost stratosphere show a strong TGM-ozone relationship indicative of fast Hg 0 oxidation, but we show that this relationship provides only a weak test of Hg chemistry because it is also influenced by mixing. The model reproduces observed Hg wet deposition fluxes over North America, Europe, and China with little bias (0-30 %). It reproduces qualitatively the observed maximum in US deposition around the Gulf of Mexico, reflecting a combination of deep convection and availability of NO 2 and HO 2 radicals for second-stage HgBr oxidation. However, the magnitude of this maximum is underestimated. The relatively low observed Hg wet deposition over rural China is attributed to fast Hg II reduction in the presence of high organic aerosol concentrations. We find that 80 % of Hg II deposition is to the global oceans, reflecting the marine origin of Br and low concentrations of organic aerosols for Hg II reduction. Most of that deposition takes place to the tropical oceans due to the availability of HO 2 and NO 2 for second-stage HgBr oxidation.
Rivers are an important source of mercury (Hg) to marine ecosystems. Based on an analysis of compiled observations, we estimate global present-day Hg discharges from rivers to ocean margins are 27 ± 13 Mmol a(-1) (5500 ± 2700 Mg a(-1)), of which 28% reaches the open ocean and the rest is deposited to ocean margin sediments. Globally, the source of Hg to the open ocean from rivers amounts to 30% of atmospheric inputs. This is larger than previously estimated due to accounting for elevated concentrations in Asian rivers and variability in offshore transport across different types of estuaries. Riverine inputs of Hg to the North Atlantic have decreased several-fold since the 1970s while inputs to the North Pacific have increased. These trends have large effects on Hg concentrations at ocean margins but are too small in the open ocean to explain observed declines of seawater concentrations in the North Atlantic or increases in the North Pacific. Burial of Hg in ocean margin sediments represents a major sink in the global Hg biogeochemical cycle that has not been previously considered. We find that including this sink in a fully coupled global biogeochemical box model helps to balance the large anthropogenic release of Hg from commercial products recently added to global inventories. It also implies that legacy anthropogenic Hg can be removed from active environmental cycling on a faster time scale (centuries instead of millennia). Natural environmental Hg levels are lower than previously estimated, implying a relatively larger impact from human activity.
). These decreases are inconsistent with current global emission inventories indicating flat or increasing emissions over that period. However, the inventories have three major flaws: (i) they do not account for the decline in atmospheric release of Hg from commercial products; (ii) they are biased in their estimate of artisanal and small-scale gold mining emissions; and (iii) they do not properly account for the change in Hg 0 /Hg II speciation of emissions from coal-fired utilities after implementation of emission controls targeted at SO 2 and NO x . We construct an improved global emission inventory for the period 1990 to 2010 accounting for the above factors and find a 20% decrease in total Hg emissions and a 30% decrease in anthropogenic Hg 0 emissions, with much larger decreases in North America and Europe offsetting the effect of increasing emissions in Asia. Implementation of our inventory in a global 3D atmospheric Hg simulation [GEOS-Chem (Goddard Earth Observing System-Chemistry)] coupled to land and ocean reservoirs reproduces the observed large-scale trends in atmospheric Hg 0 concentrations and in Hg II wet deposition. The large trends observed in North America and Europe reflect the phase-out of Hg from commercial products as well as the cobenefit from SO 2 and NO x emission controls on coal-fired utilities.mercury | trend | emission | atmosphere
Taking into consideration the variation in exposure concentration, respiration rate, and susceptibility, the overall population attributable fraction (PAF) for lung cancer caused by inhalation exposure to PAHs was 1.6% (IR, Ϸ0.91-2.6%), corresponding to an excess annual lung cancer incidence rate of 0.65 ؋ 10 ؊5 . Although the spatial variability was high, the lung cancer risk in eastern China was higher than in western China, and populations in major cities had a higher risk of lung cancer than rural areas. An extremely high PAF of >44% was estimated in isolated locations near small-scale coke oven operations.China ͉ respiration exposure ͉ PAH ͉ air pollution
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.