Ovarian cancer is the 5th leading cause of death for women with cancer worldwide. In more than 70% of cases, it is only diagnosed at an advanced stage. Our study aims to give an update on the biological markers for diagnosing ovarian cancer, specifically HE4, CA 125, RMI and ROMA algorithms.Serum CA125 assay has low sensitivity in the early stages and can be increased in certain conditions such as menstruation or endometriosis. The level of HE4 is overexpressed in ovarian tumors. Its specificity is 94% and its level is not affected by endometriosis cysts. The combined measures of CA125 and HE4 have proved to be highly efficient with an area under the curve (AUC) of up to 0.96. Furthermore, this combined measure of CA125 can correct the variations in HE4 which are due to smoking or contraception combining estrogen plus progestin. While the specificity of RMI sometimes reaches 92%, the rather low AUC of 0.86 does not make it the best diagnostic tool. The specificity of ROMA is lower than HE4 (84% compared to 94%).To date, the most efficient biological diagnostic tool to diagnose ovarian cancer is the combination of CA125 and HE4.
Key Points• The overall response rate following 4 induction cycles of VTD prior to ASCT is higher than that of 4 cycles of VCD.The Intergroupe Francophone du Myélome conducted a randomized trial to compare bortezomib-thalidomide-dexamethasone (VTD) with bortezomib-cyclophosphamidedexamethasone (VCD) as induction before high-dose therapy and autologous stem cell transplantation (ASCT) in patients with newly diagnosed multiple myeloma. Overall, a total of 340 patients were centrally randomly assigned to receive VTD or VCD. After 4 cycles, on an intent-to-treat basis, 66.3% of the patients in the VTD arm achieved at least a very good partial response (primary end point) vs 56.2% in the VCD arm (P 5 .05). In addition, the overall response rate was significantly higher in the VTD arm (92.3% vs 83.4% in the VCD arm; P 5 .01). Hematologic toxicity was higher in the VCD arm, with significantly increased rates of grade 3 and 4 anemia, thrombocytopenia, and neutropenia. On the other hand, the rate of peripheral neuropathy (PN) was significantly higher in the VTD arm. With the exception of hematologic adverse events and PN, other grade 3 or 4 toxicities were rare, with no significant differences between the VTD and VCD arms. Our data support the preferential use of VTD rather than VCD in preparation for ASCT.
BackgroundDendritic cells (DC) and regulatory cells (Treg) play pivotal roles in controlling both normal and autoimmune adaptive immune responses. DC are the main antigen-presenting cells to T cells, and they also control Treg functions. In this study, we examined the frequency and phenotype of DC subsets, and the frequency and function of Treg from patients with ANCA-associated vasculitis (AAV).Methodology/Principal FindingsBlood samples from 19 untreated patients with AAV during flares and before any immunosuppressive treatment were analyzed, along with 15 AAV patients in remission and 18 age-matched healthy controls. DC and Treg numbers, and phenotypes were assessed by flow cytometry, and in vitro suppressive function of Treg was determined by co-culture assay. When compared to healthy volunteers, absolute numbers of conventional and plasmacytoid DC were decreased in AAV patients. During the acute phase this decrease was significantly more pronounced and was associated with an increased DC expression of CD62L. Absolute numbers of Treg (CD4+CD25highCD127low/− Tcells) were moderately decreased in patients. FOXP3 and CD39 were expressed at similar levels on Treg from patients as compared to controls. The suppressive function of Treg from AAV patients was dramatically decreased as compared to controls, and this defect was more pronounced during flares than remission. This Treg functional deficiency occurred in the absence of obvious Th17 deviation.ConclusionIn conclusion, these data show that AAV flares are associated with both a decrease number and altered phenotype of circulating DC and point to a role for Treg functional deficiency in the pathogenesis of AAV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.