The manufacture of geometric engravings is generally interpreted as indicative of modern cognition and behaviour. Key questions in the debate on the origin of such behaviour are whether this innovation is restricted to Homo sapiens, and whether it has a uniquely African origin. Here we report on a fossil freshwater shell assemblage from the Hauptknochenschicht ('main bone layer') of Trinil (Java, Indonesia), the type locality of Homo erectus discovered by Eugène Dubois in 1891 (refs 2 and 3). In the Dubois collection (in the Naturalis museum, Leiden, The Netherlands) we found evidence for freshwater shellfish consumption by hominins, one unambiguous shell tool, and a shell with a geometric engraving. We dated sediment contained in the shells with (40)Ar/(39)Ar and luminescence dating methods, obtaining a maximum age of 0.54 ± 0.10 million years and a minimum age of 0.43 ± 0.05 million years. This implies that the Trinil Hauptknochenschicht is younger than previously estimated. Together, our data indicate that the engraving was made by Homo erectus, and that it is considerably older than the oldest geometric engravings described so far. Although it is at present not possible to assess the function or meaning of the engraved shell, this discovery suggests that engraving abstract patterns was in the realm of Asian Homo erectus cognition and neuromotor control.
Humans differ from other primates in their significantly lengthened growth period. The persistence of a fetal pattern of brain growth after birth is another important feature of human development. Here we present the results of an analysis of the 1.8-million-year-old Mojokerto child (Perning 1, Java), the only well preserved skull of a Homo erectus infant, by computed tomography. Comparison with a large series of extant humans and chimpanzees indicates that this individual was about 1 yr (0-1.5 yr) old at death and had an endocranial capacity at 72-84% of an average adult H. erectus. This pattern of relative brain growth resembles that of living apes, but differs from that seen in extant humans. It implies that major differences in the development of cognitive capabilities existed between H. erectus and anatomically modern humans.
Age at death of a single skeletal individual or a group is essential information in archaeological, paleoanthropological, and forensic contexts. Dental remains are the most commonly used age indicators, but when the dentition is not available, or too few teeth are present for an accurate age assessment, other age indicators such as skeletal maturation must be used. Of particular utility in this regard is the fusion of the epiphyses of the infracranial skeleton. Here we present new aging standards based on the infracranial maturation of individuals from the known age and sex collection from Coimbra, Portugal. We scored infracranial epiphyseal fusion and spheno-occipital synchondrosis closure (64 loci of ossification in total) on 137 skeletons from individuals between 7 and 29 years old. We further discuss developmental differences between the sexes and similarities and differences between the Coimbra documented collection and other published aging standards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.