In this paper, we show that the procoagulant action of Bothrops atrox venom is due in part to a protein component that activates prothrombin. The venom prothrombin activator was purified by ion-exchange chromatography and gel filtration. It was separated from a protease by affinity chromatography in a p-aminobenzamidine-CH-Sepharose column. It is a protein of about Mr 70,000, consisting of a single polypeptide chain. We have studied the kinetics of activation of prothrombin under different experimental conditions. The prothrombin activator from B. atrox venom is insensitive to reagents of serine and thiol proteases but is inactivated by ion chelators and by various divalent ions. These results suggest that it is a metalloenzyme. The prothrombin activator from B. atrox venom is inactive on the chromogenic substrates S-2337 and S-2238, and it is selective for prothrombin since it does not act on other blood coagulation factors such as fibrinogen and factor X. We have also studied the pattern of peptide cleavages produced in the human prothrombin molecule during the activation by the activator from B. atrox venom and compared it to that obtained with ecarin, a prothrombin activator from Echis carinatus venom. In the presence of thrombin inhibitors, e.g., hirudin, we found that the activators from B. atrox venom and ecarin act in a similar, or identical, manner by producing a thrombin intermediate, meizothrombin. In the absence of thrombin inhibitors, several peptides are generated, and alpha-thrombin is produced as a consequence of meizothrombin action.
We have characterized and purified the two components of the venom of Bothrops atrox that activate the coagulation factor X. Activator 1 and activator 2 were separated by ion-exchange chromatography but otherwise presented similar characteristics. They consist of a heavy polypeptide of Mr 59,000 and either one or two light chains forming a doublet of Mr 14,000-15,000. They are inactive on synthetic substrates and on prothrombin or fibrinogen and thus appear to act specifically on factor X. They are not sensitive to inhibitors of serine proteases or thiol esterases. The activation of factor X is activated by Ca2+ ions with a Hill coefficient of 2.4 and is inhibited by Hg2+, Ba2+, and Cd2+. Its pH dependency suggests that the activity depends on the ionization of a group with an apparent pK of 6.9. We studied the cleavage of purified bovine factor X by B. atrox activators and compared it to that obtained with the factor X activator from Vipera russelli venom. Like the physiological activators, the venom's activators cleave the heavy chain of factor X, producing the activated factor Xa alpha. They produce however two other cleavages: one near the N-terminal end of the heavy chain of factor X, generating factor Xmu, and a second one located at one extremity of the heavy chain of factor Xa alpha, generating factor Xav.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.