Supplemental Digital Content is available in the text.
Respect for patients' consent implies the possibility that they may refuse medical care, creating an ethical and legal dilemma of providing medical care or respecting the patients' wishes. The key issue concerning end-of-life patients rests in the decisions taken concerning the continuation or withdrawal of life support and the administration of palliative care.
Background There is an unfulfilled need to find the best way to automatically capture, analyze, organize, and merge structural and functional brain magnetic resonance imaging (MRI) data to ultimately extract relevant signals that can assist the medical decision process at the bedside of patients in postanoxic coma. We aimed to develop and validate a deep learning model to leverage multimodal 3D MRI whole-brain times series for an early evaluation of brain damages related to anoxoischemic coma. Methods This proof-of-concept, prospective, cohort study was undertaken at the intensive care unit affiliated with the University Hospital (Toulouse, France), between March 2018 and May 2020. All patients were scanned in coma state at least 2 days (4 ± 2 days) after cardiac arrest. Over the same period, age-matched healthy volunteers were recruited and included. Brain MRI quantification encompassed both “functional data” from regions of interest (precuneus and posterior cingulate cortex) with whole-brain functional connectivity analysis and “structural data” (gray matter volume, T1-weighted, fractional anisotropy, and mean diffusivity). A specifically designed 3D convolutional neuronal network (CNN) was created to allow conscious state discrimination (coma vs. controls) by using raw MRI indices as the input. A voxel-wise visualization method based on the study of convolutional filters was applied to support CNN outcome. The Ethics Committee of the University Teaching Hospital of Toulouse, France (2018-A31) approved the study and informed consent was obtained from all participants. Results The final cohort consisted of 29 patients in postanoxic coma and 34 healthy volunteers. Coma patients were successfully discerned from controls by using 3D CNN in combination with different MR indices. The best accuracy was achieved by functional MRI data, in particular with resting-state functional MRI of the posterior cingulate cortex, with an accuracy of 0.96 (range 0.94–0.98) on the test set from 10-time repeated tenfold cross-validation. Even more satisfactory performances were achieved through the majority voting strategy, which was able to compensate for mistakes from single MR indices. Visualization maps allowed us to identify the most relevant regions for each MRI index, notably regions previously described as possibly being involved in consciousness emergence. Interestingly, a posteriori analysis of misclassified patients indicated that they may present some common functional MRI traits with controls, which suggests further favorable outcomes. Conclusions A fully automated identification of clinically relevant signals from complex multimodal neuroimaging data is a major research topic that may bring a radical paradigm shift in the neuroprognostication of patients with severe brain injury. We report for the first time a successful discrimination between patients in postanoxic coma patients from people serving as controls by using 3D CNN whole-brain structural and functional MRI data. Clinical Trial Numberhttp://ClinicalTrials.gov (No. NCT03482115).
Background Fetal radiation exposure in pregnant women with trauma is a concern. The purpose of this study was to evaluate fetal radiation exposure with regard to the type of injury assessment performed. Methods It is a multicentre observational study. The cohort study included all pregnant women suspected of severe traumatic injury in the participating centres of a national trauma research network. The primary outcome was the cumulative radiation dose (mGy) received by the fetus with respect to the type of injury assessment initiated by the physician in charge of the pregnant patient. Secondary outcomes were maternal and fetal morbi-mortality, the incidence of haemorrhagic shock and the physicians’ imaging assessment with consideration of their medical specialty. Results Fifty-four pregnant women were admitted for potential major trauma between September 2011 and December 2019 in the 21 participating centres. The median gestational age was 22 weeks [12–30]. 78% of women (n = 42) underwent WBCT. The remaining patients underwent radiographs, ultrasound or selective CT scans based on clinical examination. The median fetal radiation doses were 38 mGy [23–63] and 0 mGy [0–1]. Maternal mortality (6%) was lower than fetal mortality (17%). Two women (out of 3 maternal deaths) and 7 fetuses (out of 9 fetal deaths) died within the first 24 h following trauma. Conclusions Immediate WBCT for initial injury assessment in pregnant women with trauma was associated with a fetal radiation dose below the 100 mGy threshold. Among the selected population with either a stable status with a moderate and nonthreatening injury pattern or isolated penetrating trauma, a selective strategy seemed safe in experienced centres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.