Protein A affinity chromatography is a core unit operation in antibody manufacturing. Nevertheless, there is not enough understanding of in‐column antibody adsorption in the Protein A capture step. This work aims to investigate in situ the establishment of an antibody (trastuzumab) layer during Protein A chromatography both in terms of energetic contributions and uptake kinetics. Flow microcalorimetry is employed as a technique with an in situ operating detector, which provides an understanding of the thermodynamics of the adsorption process. In addition, the antibody uptake rate is also investigated in order to establish a correlation between its diffusion on the stationary phase and the associated thermodynamics. Two resins with different particle size, intraparticle porosity, and a Protein A ligand structure are studied: the synthetically engineered B‐domain tetrameric MabSelect SuRe and the synthetically engineered C‐domain hexameric TOYOPEARL AF‐rProtein A HC. The uptake rate follows a pore diffusion model at low equilibrium time, showing a slower diffusivity after a certain time because of the heterogeneous binding nature of these two resins. In addition, the microcalorimetric studies show that adsorption enthalpy is highly favourable at low isotherm concentrations and evolves toward an equilibrium with increasing surface concentration. These data suggest that the relationship between adsorption enthalpy and the establishment of the antibody layer in the Protein A chain is consistent with heterogeneous adsorption.
The curing reaction of thermosetting resins is associated with chemical shrinkage which is overlapped with thermal expansion as a result of the exothermal enthalpy. Final material properties of the polymer are determined by this critical process. For adhesive anchor systems the overall shrinkage behavior of the material is very important for the ultimate bond behavior between adhesive and the borehole wall. An approach for the insitu measurement of 3-dimensional shrinkage and thermal expansion with digital image correlation (DIC) is presented, overcoming the common limitation of DIC to solids. Two polymer-based anchor systems (filled epoxy, vinylester) were investigated and models were developed, showing good agreement with experimental results. Additionally, measurements with differential scanning calorimetry (DSC) provided supporting information about the curing reaction. The vinylester system showed higher shrinkage but much faster reaction compared to the investigated epoxy.
In this study, different surface modifications were performed on a Cobalt-Chrome-Molybdenum (CoCrMo) alloy and the effects on cell viability and cytotoxicity as well as the adhesion potential of human osteoblasts (hFOB) and their inflammation reaction were investigated in vitro. CoCrMo discs were coated with TiN, with polished and porous coated surfaces, or with pure titanum (cpTi) surfaces and examined by Scanning Electron Microscopy to evaluate surface modifications. In vitro cell viability, adhesion behaviour, and expression of inflammation markers of hFOB human osteoblasts were measured via CellTiter-Glo, CytoTox, ELISA, and RT-PCR respectively. All results were compared to CoCrMo without surface modifications. The biocompatibility data showed high compatibility for the TiN hard coatings. Likewise, the porous surface coating increased cell viability significantly, compared to an untreated CoCrMo alloy. None of the investigated materials influenced cytotoxicity. Different surface modifications did not influence expression of fibronectin, although TiN, porous surface coatings and polished surfaces showed highly significant reductions in integrin subunit expression. In addition to the regulation of adhesion potential these three surfaces stimulated an anti-inflammatory response by osteocytes. Improved biocompatibility and adhesion properties may contribute to better osteointegration of prosthetics. Cobalt-Chrome-Molybdenum (CoCrMo) alloys are bioactive materials that display high corrosion resistance and favourable mechanical properties. For these reasons, they are frequently used as implants in orthopedic surgery, especially as replacements for hip and knee joints 1. Multiple approaches have been proposed to increase biocompatibility of CoCrMo alloys and stimulate new bone formation by enhancing osteoblast adhesions and proliferation 2-4. The most important aspect of a metallic implant is biocompatibility and how it reacts with living cells 5. Materials identified as biocompatible can be embedded within living tissue without eliciting negative or unwanted effects 6. Altering the surface of implants can be used to improve their design. Furthermore, improved implant surfaces can promote bone integration under in vivo conditions 7. Interactions between the implant surface and bone tissue can be improved through the following techniques: polishing, acid etching, sand-blasting, plasma spraying as well as applying bioactive coatings 8-10. Implants with high surface roughness speed up biological fixation, leading to bone healing 11,12. Rough implant surfaces can be produced by applying titanium particles to the surface of the implant using plasma spraying (TPS) 13,14. The increased roughness of TPS treated surfaces allows better ingrowth of bone cells and osseointegration. Apart from rough coatings, osseointegration can also be improved using mechanical polishing, as this process creates residual stress and produces a deformed layer on the surface 15. Using an in vitro model this study examined how cell viability and ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.