Native to the Ponto-Caspian region, the benthic round goby (Neogobius melanostomus) has invaded several European inland waterbodies as well as the North American Great Lakes and the Baltic Sea. The species is capable of reaching very high densities in the invaded ecosystems, with not only evidence for significant food-web effects on the native biota and habitats, but also negative implications to coastal fishers. Although generally considered a coastal species, it has been shown that round goby migrate to deeper areas of the Great Lakes and other inland lakes during the cold season. Such seasonal movements may create new spatio-temporal ecosystem consequences in invaded systems. To seek evidence for seasonal depth distribution in coastal marine habitats, we compiled all available catch data for round goby in the Baltic Sea since its invasion and until 2017. We furthermore related the depths at capture for each season with the ambient thermal environment. The round goby spend autumn and winter at significantly deeper and offshore areas compared to spring and summer months; few fish were captured at depths < 25 m in these colder months. Similarly, in spring and summer, round goby were not captured at depths > 25 m. The thermal conditions at which round goby were caught varied significantly between seasons, being on average 18.3 °C during summer, and dropping to a low 3.8 °C during winter months. Overall, the fish sought the depths within each season with the highest possible temperatures. The spatial distribution of the round goby substantially overlaps with that of its main and preferred prey (mussels) and with that of its competitor for food (flatfish), but only moderately with the coastal predatory fish (perch), indicating thereby very complex trophic interactions associated with this invasion. Further investigations should aim at quantifying the food web consequences and coupling effects between different habitats related to seasonal migrations of the round goby, both in terms of the species as a competitor, predator and prey.
The Arctic Limnocalanus macrurus is a prominent representative of large copepods which performs several essential functions in freshwater and marine ecosystems. Being a cold stenotherm species, its distribution is primarily confined to deeper water layers. Based on the long-term observations from one of the largest spatially confined natural populations of this species in the Baltic Sea, we detected profound long-term variability of L. macrurus during 1958–2016: high abundances before the 1980s, then nearly disappearance in the 1990s and recovery in the 2000s. The main environmental parameters explaining the interannual variability of L. macrurus in spring were herring spawning stock biomass in preceding year, winter severity, and bottom water temperature in preceding summer. The effect of winter severity and water temperature was also non-linear. The sliding window correlation analysis pointed to a non-stationary relationship between the abundance of L. macrurus and the key variables. Given the observed pronounced seasonality in the population structure of L. macrurus (young stages dominated in the beginning of the year and only adults were left in the population in summer and autumn) we identified the dynamics of key environmental variables to understand this species under different ecosystem configurations and different combinations of drivers of change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.