The algal spring bloom in the Baltic Sea represents an anomaly from the winter-spring bloom patterns worldwide in terms of frequent and recurring dominance of dinoflagellates over diatoms. Analysis of approximately 3500 spring bloom samples from the Baltic Sea monitoring programs revealed (i) that within the major basins the proportion of dinoflagellates varied from 0.1 (Kattegat) to >0.8 (central Baltic Proper), and (ii) substantial shifts (e.g. from 0.2 to 0.6 in the Gulf of Finland) in the dinoflagellate proportion over four decades. During a recent decade (1995–2004) the proportion of dinoflagellates increased relative to diatoms mostly in the northernmost basins (Gulf of Bothnia, from 0.1 to 0.4) and in the Gulf of Finland, (0.4 to 0.6) which are typically ice-covered areas. We hypothesize that in coastal areas a specific sequence of seasonal events, involving wintertime mixing and resuspension of benthic cysts, followed by proliferation in stratified thin layers under melting ice, favors successful seeding and accumulation of dense dinoflagellate populations over diatoms. This head-start of dinoflagellates by the onset of the spring bloom is decisive for successful competition with the faster growing diatoms. Massive cyst formation and spreading of cyst beds fuel the expanding and ever larger dinoflagellate blooms in the relatively shallow coastal waters. Shifts in the dominant spring bloom algal groups can have significant effects on major elemental fluxes and functioning of the Baltic Sea ecosystem, but also in the vast shelves and estuaries at high latitudes, where ice-associated cold-water dinoflagellates successfully compete with diatoms.
Phytoplankton blooms are dynamic phenomena of great importance to the functioning of estuarine and coastal ecosystems. We analysed a unique (large) collection of phytoplankton monitoring data covering 86 coastal sites distributed over eight regions in North America and Europe, with the aim of investigating common patterns in the seasonal timing and species composition of the blooms. The spring bloom was the most common seasonal pattern across all regions, typically occurring early (February-March) at lower latitudes and later (April-May) at higher latitudes. Bloom frequency, defined as the probability of unusually high biomass, ranged from 5 to 35% between sites and followed no consistent patterns across gradients of latitude, temperature, salinity, water depth, stratification, tidal amplitude or nutrient concentrations. Blooms were mostly dominated by a single species, typically diatoms (58% of the blooms) and dinoflagellates (19%). Diatom-dominated spring blooms were a common feature in most systems, although dinoflagellate spring blooms were also observed in the Baltic Sea. Blooms dominated by chlorophytes and cyanobacteria were only common in low salinity waters and occurred mostly at higher temperatures. Key bloom species across the eight regions included the diatoms Cerataulina pelagica and Dactyliosolen fragilissimus and dinoflagellates Heterocapsa triquetra and Prorocentrum cordatum. Other frequent bloom-forming taxa were diatom genera Chaetoceros, Coscinodiscus, Skeletonema, and Thalassiosira. Our meta-analysis shows that these 86 estuarinecoastal sites function as diatom-producing systems, the timing of that production varies widely, and that bloom frequency is not associated with environmental factors measured in monitoring programs. We end with a perspective on the limitations of conclusions derived from metaanalyses of phytoplankton time series, and the grand challenges remaining to understand the wide range of bloom patterns and processes that select species as bloom dominants in coastal waters.
The Baltic Sea is affected by a range of human induced environmental pressures such as eutrophication. Here we synthesize the ongoing shift from diatom dominance toward more dinoflagellates in parts of the Baltic Sea during the spring bloom and its potential effects on biogeochemical cycling of key elements (e.g., C, N, and P). The spring bloom is the period with the highest annual primary production and sinking of organic matter to the sediment. The fate of this organic matter is a key driver for material fluxes, affecting ecosystem functioning and eutrophication feedback loops. The dominant diatoms and dinoflagellates appear to be functionally surrogates as both groups are able to effectively exhaust the wintertime accumulation of inorganic nutrients and produce bloom level biomass that contribute to vertical export of organic matter. However, the groups have very different sedimentation patterns, and the seafloor has variable potential to mineralize the settled biomass in the different sub-basins. While diatoms sink quickly out of the euphotic zone, dinoflagellates sink as inert resting cysts, or lyse in the water column contributing to slowly settling phyto-detritus. The dominance by either phytoplankton group thus directly affects both the summertime nutrient pools of the water column and the input of organic matter to the sediment but to contrasting directions. The proliferation of dinoflagellates with high encystment efficiency could increase sediment retention and burial of organic matter, alleviating the eutrophication problem and improve the environmental status of the Baltic Sea.
Summary 1.We analysed the functional composition of coastal phytoplankton communities (n = 7941) along the gradient from marine to brackish waters of the Baltic Sea, using species-specific morphological and ecological functional traits (ability to fix atmospheric nitrogen, mixotrophy, use of silica in cell walls, formation of chains or colonies, motility, accessory pigment composition, and size), to describe and measure the functional differences between species. 2. Mean pairwise functional distance of phytoplankton communities increased from spring to mid-and late summer in all regions, due to higher pigment diversity, increased share of mixotrophic and nitrogen-fixing species, more diverse size distribution and reduced dominance of silica users. 3. A null model that simulated the expected community composition from empirical spatial distribution and environmental preferences of individual taxa was used to partition the effects of habitat filtering and biotic interactions on the community assembly. 4. About every fourth community departed significantly from random expectations, signalling the notable effect of biotic interactions in the assembly of natural phytoplankton communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.