In more than 30% of milk samples from clinical and subclinical bovine mastitis, bacteria fail to grow even after 48 h of conventional culture. The "no-growth" samples are problematic for mastitis laboratories, veterinarians, and dairy producers. This study provides the first investigation of the bacteriological etiology of such samples, using a real-time PCR-based commercial reagent kit. The assay targets the DNA of the 11 most common bacterial species or groups in mastitis and the staphylococcal blaZ gene (responsible for penicillin resistance) and can identify and quantify bacterial cells even if dead or growth-inhibited. A study was made of 79 mastitic milk samples with no-growth bacteria in conventional culture, originating from cows with clinical mastitis. Of the 79 samples, 34 (43%) were positive for 1 (32 samples) or 2 (2 samples) of the target bacteria. The positive findings included 11 Staphylococcus spp. (staphylococci other than Staphylococcus aureus), 10 Streptococcus uberis, 2 Streptococcus dysgalactiae, 6 Corynebacterium bovis, 3 Staph. aureus, 1 Escherichia coli, 1 Enterococcus, and 1 Arcanobacterium pyogenes. The positive samples contained as many as 10(3) to 10(7) bacterial genome copies per milliliter of milk. This study demonstrates that in nearly half of the clinical mastitis cases in which conventional culture failed to detect bacteria, mastitis pathogens were still present, often in substantial quantities. The clearly elevated N-acetyl-beta-d-glucosaminidase activity values of the milk samples, together with clinical signs of the infected cows and quarters, confirmed the diagnosis of clinical mastitis and indicated that real-time, PCR-based bacterial findings are able to reveal bacteriological etiology. We conclude that all common mastitis bacteria can occur in large quantities in clinical mastitis samples that exhibit no growth in conventional culture, and that the real-time PCR assay is a useful tool for bacteriological diagnosis of such milk samples. Low bacterial concentration is commonly speculated to explain the no-growth milk samples. This hypothesis is not supported by the results of the current study.
The aim of this study was to analyze bacterial profiles of bovine mastitic milk samples and samples from healthy quarters using Next Generation Sequencing of amplicons from 16S rRNA genes and to compare results with microbiological results by PCR assays of the same samples. A total of 49 samples were collected from one single dairy herd during the same day. The samples were divided in two sample sets, which were used in this study. The DNA extraction as well as the library preparation and sequencing of these two sets were performed separately, and results of the two datasets were then compared. The vast majority of genera detected appeared with low read numbers and/or in only a few samples. Results of PCR and microbiome analyses of samples infected with major pathogens
Staphylococcus aureus
or
Streptococcus uberis
were consistent as these genera also covered the majority of reads detected in the microbiome analysis. Analysis of alpha diversity revealed a much higher species richness in set 1 than in set 2. The dominating bacterial genera with the highest read numbers clearly differed between datasets, especially in PCR negative samples and samples positive for minor pathogens. In addition to this, linear discriminant analysis (LDA) was conducted between the two sets to identify significantly different genera/family level microbes. The genus
Methylobacterium
was much more common in set 2 compared to set 1, and genus
Streptococcus
more common in set 1. Our results indicate amplification of contaminating bacteria in excess in samples with no or minor amounts of pathogen DNA in dataset 2. There is a need for critical assessment of results of milk microbiome analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.