Although aesthetic experiences are frequent in modern life, there is as of yet no scientifically comprehensive theory that explains what psychologically constitutes such experiences. These experiences are particularly interesting because of their hedonic properties and the possibility to provide self-rewarding cognitive operations. We shall explain why modern art's large number of individualized styles, innovativeness and conceptuality offer positive aesthetic experiences. Moreover, the challenge of art is mainly driven by a need for understanding. Cognitive challenges of both abstract art and other conceptual, complex and multidimensional stimuli require an extension of previous approaches to empirical aesthetics. We present an information-processing stage model of aesthetic processing. According to the model, aesthetic experiences involve five stages: perception, explicit classification, implicit classification, cognitive mastering and evaluation. The model differentiates between aesthetic emotion and aesthetic judgments as two types of output.
This paper has a rather audacious purpose: to present a comprehensive theory explaining, and further providing hypotheses for the empirical study of, the multiple ways by which people respond to art. Despite common agreement that interaction with art can be based on a compelling, and occasionally profound, psychological experience, the nature of these interactions is still under debate. We propose a model, The Vienna Integrated Model of Art Perception (VIMAP), with the goal of resolving the multifarious processes that can occur when we perceive and interact with visual art. Specifically, we focus on the need to integrate bottom-up, artwork-derived processes, which have formed the bulk of previous theoretical and empirical assessments, with top-down mechanisms which can describe how individuals adapt or change within their processing experience, and thus how individuals may come to particularly moving, disturbing, transformative, as well as mundane, results. This is achieved by combining several recent lines of theoretical research into a new integrated approach built around three processing checks, which we argue can be used to systematically delineate the possible outcomes in art experience. We also connect our model's processing stages to specific hypotheses for emotional, evaluative, and physiological factors, and address main topics in psychological aesthetics including provocative reactions-chills, awe, thrills, sublime-and difference between "aesthetic" and "everyday" emotional response. Finally, we take the needed step of connecting stages to functional regions in the brain, as well as broader core networks that may coincide with the proposed cognitive checks, and which taken together can serve as a basis for future empirical and theoretical art research.
About a decade ago, psychology of the arts started to gain momentum owing to a number of drives: technological progress improved the conditions under which art could be studied in the laboratory, neuroscience discovered the arts as an area of interest, and new theories offered a more comprehensive look at aesthetic experiences. Ten years ago, Leder, Belke, Oeberst, and Augustin (2004) proposed a descriptive information-processing model of the components that integrate an aesthetic episode. This theory offered explanations for modern art's large number of individualized styles, innovativeness, and for the diverse aesthetic experiences it can stimulate. In addition, it described how information is processed over the time course of an aesthetic episode, within and over perceptual, cognitive and emotional components. Here, we review the current state of the model, and its relation to the major topics in empirical aesthetics today, including the nature of aesthetic emotions, the role of context, and the neural and evolutionary foundations of art and aesthetics.
On average, we urban dwellers spend about 90% of our time indoors, and share the intuition that the physical features of the places we live and work in influence how we feel and act. However, there is surprisingly little research on how architecture impacts behavior, much less on how it influences brain function. To begin closing this gap, we conducted a functional magnetic resonance imaging study to examine how systematic variation in contour impacts aesthetic judgments and approach-avoidance decisions, outcome measures of interest to both architects and users of spaces alike. As predicted, participants were more likely to judge spaces as beautiful if they were curvilinear than rectilinear. Neuroanatomically, when contemplating beauty, curvilinear contour activated the anterior cingulate cortex exclusively, a region strongly responsive to the reward properties and emotional salience of objects. Complementing this finding, pleasantness-the valence dimension of the affect circumplex-accounted for nearly 60% of the variance in beauty ratings. Furthermore, activation in a distributed brain network known to underlie the aesthetic evaluation of different types of visual stimuli covaried with beauty ratings. In contrast, contour did not affect approach-avoidance decisions, although curvilinear spaces activated the visual cortex. The results suggest that the well-established effect of contour on aesthetic preference can be extended to architecture. Furthermore, the combination of our behavioral and neural evidence underscores the role of emotion in our preference for curvilinear objects in this domain.neuroaesthetics | design | curvature | habitat theory
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.