We characterize a novel human cohesinopathy originated from a familial germline mutation of the gene encoding the cohesin subunit STAG2, which we propose to call STAG2-related X-linked Intellectual Deficiency. Five individuals carry a STAG2 p.Ser327Asn (c.980 G > A) variant that perfectly cosegregates with a phenotype of syndromic mental retardation in a characteristic X-linked recessive pattern. Although patient-derived cells did not show overt sister-chromatid cohesion defects, they exhibited altered cell cycle profiles and gene expression patterns that were consistent with cohesin deficiency. The protein level of STAG2 in patient cells was normal. Interestingly, STAG2 S327 is located at a conserved site crucial for binding to SCC1 and cohesin regulators. When expressed in human cells, the STAG2 p.Ser327Asn mutant is defective in binding to SCC1 and other cohesin subunits and regulators. Thus, decreased amount of intact cohesin likely underlies the phenotypes of STAG2-SXLID. Intriguingly, recombinant STAG2 p.Ser327Asn binds normally to SCC1, WAPL, and SGO1 in vitro, suggesting the existence of unknown in vivo mechanisms that regulate the interaction between STAG2 and SCC1.
It has been shown that the mtDNA of the parasitic trematode Schistosoma mansoni is hypervariable in size. We report here that this length variation is due to a large polymorphic minisatellite composed of two types of repeated sequences of 558 bp and 62 bp. Each minisatellite repeat is made up of a large 558-bp component and a variable tandem array of the small 62-bp unit. Of more fundamental interest was the finding that both the 558-bp and 62-bp components have significant homology with a gene, SM750, previously identified in the nuclear genome of S. mansoni. The small 62-bp unit is identical to the nuclear polymorphic repeat element, which is apparently spread throughout the nuclear genome and is abundant among transcripts, in addition to being present in five tandem copies in SM750. The presence, in the S. mansoni mtDNA, of fragments of genes that are present in and transcribed from the nuclear genome raises the question of the origin of these sequences. The arrangement and the variability that the mtDNA minisatellite embodies were explored as an identity test for S. mansoni based on the use of PCR for tallying the relative abundance of the several repeat numbers of the tandem arrays of the 62-bp unit within the minisatellite structure.
Objective: Short insertion-deletion polymorphisms (indels) are the second most abundant form of genetic variations in humans after SNPs. Since indel alleles differ in size, they can be typed using the same methodological approaches and equipment currently utilized for microsatellite genotyping, which is already operational in forensic laboratories. We have previously shown that a panel of 40 carefully chosen indels has excellent potential for forensic identification, with combined probability of identity (match probability) of 7.09 × 10–17 for Europeans. Methods: We describe the successful development of a multiplex system for genotyping the 40-indel panel in long thin denaturing polyacrylamide gels with silver staining. We also demonstrate that the system can be easily fully automated with a simple large scanner and commercial software. Results and Conclusion: The great advantage of the new system of typing is its very low cost. The total price for laboratory equipment is less than EUR 10,000.–, and genotyping of an individual patient will cost less than EUR 10.– in supplies. Thus, the 40indel panel described here and the newly developed ‘low-tech’ analysis platform represent useful new tools for forensic identification and kinship analysis in laboratories with limited budgets, especially in developing countries.
Infantile myofibromatosis (IM) is a rare disorder characterized by the development of benign tumors in the skin, muscle, bone, and viscera. The incidence is 1/150,000 live births and the disease is the most common cause of fibrous tumors in infancy. Cases which lack visceral involvement generally have a more benign course, usually with spontaneous regression of the tumors. On the other hand, the prognosis tends to be unfavorable when there is involvement of vital organs, which can lead to significant mortality. The identification of rare variants in genes that may cause IM is the first step towards the possibility of targeted treatments; however, the molecular pathogenesis of IM is poorly understood. In the present study, we report the results of exome sequence analysis of two brothers diagnosed with visceral multicentric infantile myofibromatosis, and their healthy consanguineous parents. In the two brothers we identified novel homozygous variants in NDRG4 gene (N-myc downregulated gene family member 4) and in RLTPR gene (RGD motif, leucine rich repeats, tropomodulin domain and proline-rich containing). The healthy parents were heterozygous for both variants. Consistent with the phenotype of IM, NDRG4 is a tumor-related gene; its expression has been shown to be decreased in numerous tumor types, suggesting that it might be a tumor suppressor gene. Additionally, studies have demonstrated that NDRG4 may have a role in cell survival and tumor invasion. We thus propose that this homozygous variant in NDRG4 may be the causative variant of the autosomal recessive form of IM in the studied family and that it should be investigated in other cases of autosomal recessive infantile myofibromatosis.
Because of economic limitations, the cost-effective diagnosis of patients affected with rare microdeletion or microduplication syndromes is a challenge in developing countries. Here we report a sensitive, rapid, and affordable detection method that we have called Microdeletion/Microduplication Quantitative Fluorescent PCR (MQF-PCR). Our procedure is based on the finding of genomic regions with high homology to segments of the critical microdeletion/microduplication region. PCR amplification of both using the same primer pair, establishes competitive kinetics and relative quantification of amplicons, as happens in microsatellite-based Quantitative Fluorescence PCR. We used patients with two common microdeletion syndromes, the Williams-Beuren syndrome (7q11.23 microdeletion) and the 22q11.2 microdeletion syndromes and discovered that MQF-PCR could detect both with 100% sensitivity and 100% specificity. Additionally, we demonstrated that the same principle could be reliably used for detection of microduplication syndromes, by using patients with the Lubs (MECP2 duplication) syndrome and the 17q11.2 microduplication involving the NF1 gene. We propose that MQF-PCR is a useful procedure for laboratory confirmation of the clinical diagnosis of microdeletion/microduplication syndromes, ideally suited for use in developing countries, but having general applicability as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.