In the past decade, significant progress has been made in understanding the role of protein tyrosine phosphatase as a positive regulator of tumor progression. In this scenario, our group was one of the first to report the involvement of the low molecular weight protein tyrosine phosphatase (LMWPTP or ACP1) in the process of resistance and migration of tumor cells. Later, we and others demonstrated a positive correlation between the amount of this enzyme in human tumors and the poor prognosis. With this information in mind, we asked if LMWPTP contribution to metastasis, would it have an action beyond the primary tumor site. We know that the amount of this enzyme in the tumor cell correlates positively with the ability of cancer cells to interact with platelets, an indication that this enzyme is also important for the survival of these cells in the bloodstream. Here, we discuss several molecular aspects that support the idea of LMWPTP as a signaling hub of cancer hallmarks. Chemical and genetic modulation of LMWPTP proved to shut down signaling pathways associated with cancer aggressiveness. Therefore, advances in the development of LMWPTP inhibitors have great applicability in human diseases such as cancer.
Reversible phosphorylation of proteins, executed by kinases and phosphatases, is the major posttranslational protein modification in eukaryotic cells, causing them to become activated or deactivated. This intracellular event represents a critical regulatory mechanism of several signaling pathways and can be related to a broad number of diseases, including cancer. Few decades ago, protein tyrosine phosphatases (PTPs) were considered as tumor suppressors. However, nowadays, accumulating evidence demonstrates that a misregulation of PTP activities plays a crucial and decisive role in cancer progression and metastasis. In this chapter, we will focus on the molecular aspects that support the crucial role of PTPs in cancer and in turn make them promising for prediction, monitoring, and rational appropriate therapy selection of individual patients.
Chenopodin is an 11S-type globulin purified from Chenopodium quinoa seeds, which can bind carbohydrates and hemagglutinating human erythrocytes. The present study aimed to evaluate the N-terminal structure of the heterodimeric Chenopodin and its effects in models of inflammation. Chenopodin presented two subunits on its structure and has N-terminal homology with other Chenopodin in 92%. Chenopodin decreased paw edema and neutrophil recruitment induced by carrageenan in mice. Concluding, we demonstrated that Chenopodin exhibits in vivo anti-inflammatory activity.
Melanoma is a type of skin cancer with low survival rates after it has metastasized. In order to find molecular differences that could represent targets of quercetin in anti-melanoma activity, we have chosen SKMEL-103 and SKMEL-28 melanoma cells and human melanocytes as models. Firstly, we observed that quercetin was able in reducing SKMEL-103 cell viability, but not in SKMEL-28. Besides that, quercetin treatment caused inhibition of AXL in both cell lines, but upregulation of PIM-1 in SKMEL-28 and downregulation in SKMEL-103. Moreover, HIF-1 alpha expression decreased in both cell lines. Interestingly, quercetin was more effective against SKMEL-103 than kinases inhibitors, such as Imatinib, Temsirolimus, U0126, and Erlotinib. Interestingly, we observed that while the levels of succinate dehydrogenase and voltage-dependent anion channel increased in SKMEL-103, both proteins were downregulated in SKMEL-28 after quercetin’s treatment. Furthermore, AKT, AXL, PIM-1, ABL kinases were much more active and chaperones HSP90, HSP70 and GAPDH were highly expressed in SKMEL-103 cells in comparison with melanocytes. Our findings indicate, for the first time, that the efficacy of quercetin to kill melanoma cells depends on its ability in inhibiting tyrosine kinase and upregulating mitochondrial proteins, at least when SKMEL-103 and SKMEL-28 cells response were compared.
Colorectal Cancer (CRC) therapy confronts challenges as chemoresistance and side effects. Therefore, drugs with antitumor properties that downmodulate aggressiveness mediators are required. Studies have shown the relevance of Low Molecular Weight Tyrosine Phosphatase (LMWPTP), Protein Tyrosine Phosphatase 1B (PTP1B), and Transforming Growth Factor β (TGFβ) in mediating proliferation, chemoresistance, and metastasis. In this study, we aimed to investigate the responsiveness of colorectal cancer lines (HT29 and HCT116) towards Vemurafenib and whether this treatment could modulate these aggressiveness mediators. Cytotoxicity Assays (MTT and Trypan Exclusion Test) were performed to evaluate the viability of HT29 and HCT116 cells treated with Vemurafenib. Western blotting was performed to analyze the amount and/or the activity of mediators (LMWPTP, PTP1B, TGFβ, SMAD3), and the immunoprecipitation was performed to evaluate LMWPTP activity. This study brought up novel aspects of Vemurafenib action in colorectal cancer, which can decrease the activity of protein tyrosine phosphatases (LMWPTP and PTP1B) and the TGFβ pathway, making them important in the CRC aggressiveness. By downmodulating colorectal cancer hallmarks, Vemurafenib appears as an interesting candidate for CRC therapeutic protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.