Visualization and visual analysis play important roles in exploring, analyzing, and presenting scientific data. In many disciplines, data and model scenarios are becoming multifaceted: data are often spatiotemporal and multivariate; they stem from different data sources (multimodal data), from multiple simulation runs (multirun/ensemble data), or from multiphysics simulations of interacting phenomena (multimodel data resulting from coupled simulation models). Also, data can be of different dimensionality or structured on various types of grids that need to be related or fused in the visualization. This heterogeneity of data characteristics presents new opportunities as well as technical challenges for visualization research. Visualization and interaction techniques are thus often combined with computational analysis. In this survey, we study existing methods for visualization and interactive visual analysis of multifaceted scientific data. Based on a thorough literature review, a categorization of approaches is proposed. We cover a wide range of fields and discuss to which degree the different challenges are matched with existing solutions for visualization and visual analysis. This leads to conclusions with respect to promising research directions, for instance, to pursue new solutions for multirun and multimodel data as well as techniques that support a multitude of facets.
Flow visualisation is an attractive topic in data visualisation
Categorical data dimensions appear in many real-world data sets, but few visualization methods exist that properly deal with them. Parallel Sets are a new method for the visualization and interactive exploration of categorical data that shows data frequencies instead of the individual data points. The method is based on the axis layout of parallel coordinates, with boxes representing the categories and parallelograms between the axes showing the relations between categories. In addition to the visual representation, we designed a rich set of interactions. Parallel Sets allow the user to interactively remap the data to new categorizations and, thus, to consider more data dimensions during exploration and analysis than usually possible. At the same time, a metalevel, semantic representation of the data is built. Common procedures, like building the cross product of two or more dimensions, can be performed automatically, thus complementing the interactive visualization. We demonstrate Parallel Sets by analyzing a large CRM data set, as well as investigating housing data from two US states.
Flow visualization has been a very attractive component of scientific visualization research for a long time.Usually very large multivariate datasets require processing. These datasets often consist of a large number of sample locations and several time steps. The steadily increasing performance of computers has recently become a driving factor for a reemergence in flow visualization research, especially in texture-based techniques. In this paper, dense, texture-based flow visualization techniques are discussed. This class of techniques attempts to provide a complete, dense representation of the flow field with high spatio-temporal coherency. An attempt of categorizing closely related solutions is incorporated and presented. Fundamentals are shortly addressed as well as advantages and disadvantages of the methods.
Focus+context visualization integrates a visually accentuated representation of selected data items in focus (more details, more opacity, etc.) with a visually deemphasized representation of the rest of the data, i.e., the context. The role of context visualization is to provide an overview of the data for improved user orientation and improved navigation. A good overview comprises the representation of both outliers and trends. Up to now, however, context visualization not really treated outliers sufficiently. In this paper we present a new approach to focus+context visualization in parallel coordinates which is truthful to outliers in the sense that small-scale features are detected before visualization and then treated specially during context visualization. Generally, we present a solution which enables context visualization at several levels of abstraction, both for the representation of outliers and trends. We introduce outlier detection and context generation to parallel coordinates on the basis of a binned data representation. This leads to an output-oriented visualization approach which means that only those parts of the visualization process are executed which actually affect the final rendering. Accordingly, the performance of this solution is much more dependent on the visualization size than on the data size which makes it especially interesting for large datasets. Previous approaches are outperformed, the new solution was successfully applied to datasets with up to 3 million data records and up to 50 dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.