Flow visualization is a fascinating sub-branch of scientific visualization. With ever increasing computing power, it is possible to process ever more complex fluid simulations. However, a gap between data set sizes and our ability to visualize them remains. This is especially true for the field of flow visualization which deals with large, timedependent, multivariate simulation datasets. In this paper, geometry based flow visualization techniques form the focus of discussion. Geometric flow visualization methods place discrete objects in the vector field whose characteristics reflect the underlying properties of the flow. A great amount of progress has been made in this field over the last two decades. However, a number of challenges remain, including placement, speed of computation, and perception. In this survey, we review and classify geometric flow visualization literature according to the most important challenges when considering such a visualization, a central theme being the seeding object upon which they are based. This paper details our investigation into these techniques with discussions on their applicability and their relative merits and drawbacks. The result is an up-to-date overview of the current state-of-the-art that highlights both solved and unsolved problems in this rapidly evolving branch of research. It also serves as a concise introduction to the field of flow visualization research.
Flow visualization has been a very attractive component of scientific visualization research for a long time.Usually very large multivariate datasets require processing. These datasets often consist of a large number of sample locations and several time steps. The steadily increasing performance of computers has recently become a driving factor for a reemergence in flow visualization research, especially in texture-based techniques. In this paper, dense, texture-based flow visualization techniques are discussed. This class of techniques attempts to provide a complete, dense representation of the flow field with high spatio-temporal coherency. An attempt of categorizing closely related solutions is incorporated and presented. Fundamentals are shortly addressed as well as advantages and disadvantages of the methods.
Flow visualization research has made rapid advances in recent years, especially in the area of topology-based flow visualization. The ever increasing size of scientific data sets favors algorithms that are capable of extracting important subsets of the data, leaving the scientist with a more manageable representation that may be visualized interactively. Extracting the topology of a flow achieves the goal of obtaining a compact representation of a vector or tensor field while simultaneously retaining its most important features. We present the state of the art in topology-based flow visualization techniques. We outline numerous topology-based algorithms categorized according to the type and dimensionality of data on which they operate and according to the goal-oriented nature of each method. Topology tracking algorithms are also discussed. The result serves as a useful introduction and overview to research literature concerned with the study of topology-based flow visualization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.