Spinal cord stimulation (SCS) is a valuable treatment for chronic intractable neuropathic pain. Although SCS has gone through a technological revolution over the last four decades, the neurophysiologic and biochemical mechanisms of action have only been partly elucidated. Animal experimental work has provided some evidence for spinal as well as supraspinal mechanisms of neuropathic pain relief of SCS. A SCS computer model of the electrical properties of the human spinal cord revealed many basic neurophysiologic principles that were clinically validated later on. The main question in clinical SCS is how to further improve the effectiveness of SCS as there is still a significant failure rate of 30%. In this context, experimental studies are needed to elucidate which target pain neuron(s) are involved, as well as with what exact electrical stimulation this target neuron can be influenced to produce an optimal supapression of neuropathic pain. This article reviews the basic clinical and experimental technical aspects in relation to the effectiveness of SCS in view of recent understanding of the dorsal horn pain circuit involved. These data may then result in experiments needed for an improved understanding of the mechanisms underlying SCS and consequently lead to improvement and increased effectiveness of SCS in neuropathic pain as a clinical therapy.
Although spinal cord stimulation (SCS) of the dorsal columns is an established method for treating chronic neuropathic pain, patients still suffer from a substantial level of pain. From a clinical perspective it is known that the location of the SCS is of pivotal importance, thereby suggesting a segmental spinal mode of action. However, experimental studies suggest that SCS acts also through the modulation of supraspinal mechanisms, which might suggest that the location is unimportant. Here we investigated the effect of the rostrocaudal location of SCS stimulation and the effectiveness of pain relief in a rat model of chronic neuropathic pain. Adult male rats (n=45) were submitted to a partial ligation of the sciatic nerve. The majority of animals developed tactile hypersensitivity in the nerve lesioned paw. All allodynic rats were submitted to SCS (n=33) for 30 minutes (f=50 Hz; pulse width 0.2 ms). In one group (n=16) the electrodes were located at the level where the injured sciatic nerve afferents enter the spinal cord (T13), and in a second group (n=17) the electrodes were positioned at more rostral levels (T11) as verified by X-ray. A repositioning experiment of electrodes from T12 to T13 was performed in 2 animals. Our data demonstrate that SCS of the dorsal columns at the level where the injured fibers enter the spinal cord dorsal horn result in a much better pain-relieving effect than SCS at more rostral levels. From this we conclude that SCS in treatment of neuropathic pain acts through a segmental spinal site of action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.