Selenium is an essential micronutrient that suppresses the redox-sensitive transcription factor NF-B-dependent proinflammatory gene expression. To understand the molecular mechanisms underlying the anti-inflammatory property of selenium, we examined the activity of a key kinase of the NF-B cascade, IB-kinase  (IKK) subunit, as a function of cellular selenium status in murine primary bone marrow-derived macrophages and RAW264.7 macrophage-like cell line. In vitro kinase assays revealed that selenium supplementation decreased the activity of IKK in lipopolysaccharide (LPS)-treated macrophages. Stimulation by LPS of seleniumsupplemented macrophages resulted in a time-dependent increase in 15-deoxy-⌬ 12,14 -prostaglandin J 2 (15d-PGJ 2 ) formation, an endogenous inhibitor of IKK activity. Further analysis revealed that inhibition of IKK activity in seleniumsupplemented cells correlated with the Michael addition product of 15d-PGJ 2 with Cys-179 of IKK, while the formation of such an adduct was significantly decreased in the selenium-deficient macrophages. In addition, anti-inflammatory activities of selenium were also mediated by the 15d-PGJ 2 -dependent activation of the peroxisome proliferator-activated nuclear receptor-␥ in macrophages. Experiments using specific cyclooxygenase (COX) inhibitors and genetic knockdown approaches indicated that COX-1, and not the COX-2 pathway, was responsible for the increased synthesis of 15d-PGJ 2 in selenium-supplemented macrophages. Taken together, our results suggest that selenium supplementation increases the production of 15d-PGJ 2 as an adaptive response to protect cells against oxidative stress-induced pro-inflammatory gene expression. More specifically, modification of protein thiols by 15d-PGJ 2 represents a previously undescribed code for redox regulation of gene expression by selenium.
Selenium (Se) is an important element required for the optimal functioning of the immune system. Particularly in macrophages, which play a pivotal role in immune regulation, Se acts as a major antioxidant in the form of selenoproteins to mitigate the cytotoxic effects of reactive oxygen species. Here we describe the role of Se as an anti-inflammatory agent and its effect on the macrophage signal transduction pathways elicited by bacterial endotoxin, LPS. Our studies demonstrate that supplementation of Se to macrophages (Se-deficient) leads to a significant decrease in the LPS-induced expression of two important pro-inflammatory genes, cyclooxygenase-2 (COX-2) and tumor necrosis factor-alpha (TNF-alpha) via the inhibition of MAP kinase pathways. Furthermore, Se-deficiency in mice exacerbated the LPS-mediated infiltration of macrophages into the lungs suggesting that Se status is a crucial host factor that regulates inflammation. In summary, our results indicate that Se plays an important role as an anti-inflammatory agent by tightly regulating the expression of pro-inflammatory genes in immune cells.
Epidemiological studies suggest a correlation between severity of acquired immunodeficiency syndrome (AIDS) and selenium deficiency, indicating a protective role for this anti-oxidant during HIV infection. Here we demonstrate that thioredoxin reductase-1 (TR1), a selenium-containing pyridine nucleotide-disulfide oxidoreductase that reduces protein disulfides to free thiols, negatively regulates the activity of the HIV-1 encoded transcriptional activator, Tat, in human macrophages. We used a small interfering RNA approach as well as a high affinity substrate of TR1, ebselen, to demonstrate that Tat-dependent transcription and HIV-1 replication were significantly increased in human macrophages when TR1 activity was reduced. The increase in HIV-1 replication in TR1 small interfering RNA-treated cells was independent of the redox-sensitive transcription factor, NF-B. These studies indicate that TR-1 acts as a negative regulator of Tat-dependent transcription. Furthermore, in vitro biochemical assays with recombinant Tat protein confirmed that TR1 targets two disulfide bonds within the Cys-rich motif required for efficient HIV-1 transactivation. Increasing TR1 expression along with other selenoproteins by supplementing with selenium suggests a potential inexpensive adjuvant therapy for HIV/AIDS patients.
Synopsis Gambogic acid (GA) is a polyprenylated xanthone abundant in the resin of Garcinia morella and G. hanburyi with a long history of use as a complementary and alternative medicine. The anti-tumor activity of GA has been well demonstrated and is thought to arise partly from the associated anti-inflammatory activity. Recent studies have indicated that the anti-tumor activity of GA is mediated by its ligation of the transferrin receptor TfR1. Since the cellular expression of TfR1 is down-regulated by lipopolysaccharide (LPS), we hypothesized that an alternative pathway exists in immune cells, such as macrophages, where GA could mitigate the expression of pro-inflammatory genes. Here we demonstrate that GA inhibits the LPS-dependent expression of nuclear factor-κB (NF-κB) target pro-inflammatory genes in macrophages. Western immunoblot, NF-κB luciferase reporter, and gel shift analyses revealed that GA strongly blocked the activation of NF-κB induced by LPS; while 9,10-dihydroGA that lacks the reactive α,β-unsaturated carbonyl group was ineffective. Moreover, GA was able to decrease nuclear p65 levels in RAW264.7 macrophages, where the expression of TfR1 was down-regulated by RNA interference. In-vitro kinase assays coupled with interaction studies using biotinylated GA as well as proteomic analysis demonstrated that IKKβ, a key kinase of the NF-κB signaling axis, was covalently modified by GA at Cys179 causing significant inhibition of its kinase activity. Taken together, these data demonstrate the potent anti-inflammatory activity of GA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.