In the present work, a zigzag model for symmetric laminated beam is developed. This model uses a sine term to represent the nonlinear displacement field across the thickness as compared to a third order polynomial term in conventional theories. Transverse shear stress and strain are represented by a cosine term as compared to parabolic term. This model satisfies displacement and transverse shear stress continuity at the interface. Zero transverse shear stress boundary condition at the top and bottom of the beam are also satisfied. The numerical results indicates that the present model predicts very accurate results for displacement and stresses for symmetric cross-ply laminated beam, even for small length to thickness ratio. The results are also compared with a simplified theory of same class.
First-order shear deformation theories, one proposed by Reissner and another one by Mindlin, are widely in use, even today, because of their simplicity. In this paper, two new displacement based first-order shear deformation theories involving only two unknown functions, as against three functions in case of Reissner’s and Mindlin’s theories, are introduced. For static problems, governing equations of one of the proposed theories are uncoupled. And for dynamic problems, governing equations of one of the theories are only inertially coupled, whereas those of the other theory are only elastically coupled. Both the theories are variationally consistent. The effectiveness of the theories is brought out through illustrative examples. One of the theories has striking similarity with classical plate theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.