Fetal movement is an important clinical indicator to assess fetus growth and development status in the uterus. In recent years, a noninvasive intelligent sensing fetal movement detection system that can monitor high-risk pregnancies at home has received a lot of attention in the field of wearable health monitoring. However, recovering fetal movement signals from a continuous low-amplitude background that is heavily contaminated with noise and recognizing real fetal movements is a challenging task. In this paper, fetal movement can be efficiently recognized by combining the strength of Kalman filtering, time and frequency domain and wavelet domain feature extraction, and hyperparameter tuned Light Gradient Boosting Machine (LightGBM) model. Firstly, the Kalman filtering (KF) algorithm is used to recover the fetal movement signal in a continuous low-amplitude background contaminated by noise. Secondly, the time domain, frequency domain, and wavelet domain (TFWD) features of the preprocessed fetal movement signal are extracted. Finally, the Bayesian Optimization algorithm (BOA) is used to optimize the LightGBM model to obtain the optimal hyperparameters. Through this, the accurate prediction and recognition of fetal movement are successfully achieved. In the performance analysis of the Zenodo fetal movement dataset, the proposed KF + TFWD + BOA-LGBM approach’s recognition accuracy and F1-Score reached 94.06% and 96.85%, respectively. Compared with 8 existing advanced methods for fetal movement signal recognition, the proposed method has better accuracy and robustness, indicating its potential medical application in wearable smart sensing systems for fetal prenatal health monitoring.
At present, the functions of home service robots are not perfect, and home service robot systems that can independently complete autonomous inspections and home services are still lacking. In response to this problem, this paper designs a smart home service robot system based on ROS. The system uses Raspberry Pi 3B as the main control to manage the nodes of each sensor. CC2530 sets up a ZigBee network to collect home environmental information and control home electrical appliances. The image information of the home is collected by the USB camera. The human speech is recognized by Baidu Speech Recognition API. When encountering a dangerous situation, the GSM module is used to give users SMS and phone alarms. Arduino mega2560 is used as the bottom controller to control the movement of the service robot. The indoor environment map of the home is constructed by the lidar and the attitude sensor. The service robot finally designed and developed realizes the functions of wireless control of home appliances, voice remote control, autonomous positioning and navigation, liquefied gas leakage alarm, and human infrared detection alarm. Compared with the household service robots in the related literature, the household service robots developed by us have more complete functions. And the robot system has completed the task of combining independent patrol and home service well.
In response to the traditional WiFi location fingerprint positioning algorithm still having a low positioning accuracy, which is difficult to meet the robot indoor positioning and navigation needs, a series of improvements are made to the traditional WiFi location fingerprint positioning algorithm, so that the positioning accuracy of the algorithm can be effectively improved. At the stage of building the location fingerprint library offline, WiFi signals are collected at each reference point by reducing the reference point spacing of the traditional location fingerprinting algorithm and then using different time period collection methods. The WiFi signal strength values are standardized using the standardization processing method to improve the specificity of traditional location fingerprinting. In the real-time localization stage, the WiFi signals collected from the unknown location points are averaged, and then, the fingerprint similarity calculation is performed using a matching method based on the magnitude of the Marxian distance as a similarity reference. In order to eliminate the location fingerprints that degrade the localization accuracy, an improved adaptive K -value WKNN algorithm is integrated at the end of the localization algorithm. The improved localization algorithm and the proposed raster-based navigation algorithm are validated in a fixed experimental environment. The experimental results show that the probability of the improved algorithm’s positioning error within 0.4 m is 49%, which is a 35% improvement over the conventional algorithm. Combining the improved positioning algorithm with our proposed grid-based navigation algorithm, the final navigation error probability within 0.8 m is 62%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.