During bone formation, multipotential mesenchymal cells proliferate and differentiate into osteoblasts, and subsequently many die because of apoptosis. Evidence suggests that the receptor for parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP), the PTH-1 receptor (PTH-1R), plays an important role in this process. Multipotential mesenchymal cells (C3H10T1/2) transfected with normal or mutant PTH-1Rs and MC3T3-E1 osteoblastic cells were used to explore the roles of PTH, PTHrP, and the PTH-1R in cell viability relative to osteoblastic differentiation. Overexpression of wild-type PTH-1R increased cell numbers and promoted osteocalcin gene expression versus inactivated mutant receptors. Furthermore, the effects of PTH and PTHrP on apoptosis were dramatically dependent on cell status. In preconfluent C3H10T1/2 and MC3T3-E1 cells, PTH and PTHrP protected against dexamethasone-induced reduction in cell viability, which was dependent on cAMP activation. Conversely, PTH and PTHrP resulted in reduced cell viability in postconfluent cells, which was also dependent on cAMP activation. Further, the proapoptotic-like effects were associated with an inhibition of Akt phosphorylation. These data suggest that parathyroid hormones accelerate turnover of osteoblasts by promoting cell viability early and promoting cell departure from the differentiation program later in their developmental scheme. Both of these actions occur at least in part via the protein kinase A pathway.The classical skeletal action of parathyroid hormone (PTH)
Carriage of the TNF2 allele is a significant predictor of HCC independent of hepatitis B and C, and therefore it may be used as a biomarker for susceptibility to HCC.
Collagen sponges are widely used scaffolds in bone engineering. To form bone, the osteoblastic cells undergo proliferation, differentiation, and mineralization stages in the scaffold. Crosslinking and freezing temperature are two important variables in fabricating collagen sponges. The purpose of this study was to examine the osteoblastic responses to collagen sponges prepared with or without glutaraldehyde crosslinking at different freezing temperatures (-20 degrees C or -80 degrees C). MC3T3-E1 osteoblastic cells were cultured in differently prepared sponges. Osteoblastic responses examined included cell numbers, osteocalcin expression, and calcium deposition. Cell numbers were measured by DNA content. Osteocalcin expression was determined by RT-PCR and real-time RT-PCR. Calcium deposition was assayed by ortho-cresophthalein complexone method and von Kossa stain. The osteoblastic cells grown in all collagen sponges did not show apparent signs of cytotoxicity. Collagen sponges differed in freezing temperatures resulted in similar osteoblastic responses. Glutaraldehyde-crosslinked sponges demonstrated less cell-mediated contraction and more cell numbers at day 7 (p < 0.005). However, they showed lower osteocalcin expression at day 7 (p < 0.05) and less calcium deposition at day 21 (p < 0.001). In summary, different freezing temperatures played a minor role in osteoblastic responses. Glutaraldehyde crosslinking process, though improved the dimensional stability of collagen sponges, might compromise the osteoblastic differentiation and mineralization.
cAMP plays a critical role in intracellular signaling pathways that regulate proliferation or differentiation. The cAMP binding protein assay, using a naturally derived cAMP binding protein, is one of the most widely used methods for cAMP determination. The major steps of this binding assay include purification of the binding protein, cAMP extraction from samples, and quantification of the cAMP Most purification methods of the cAMP binding protein were published before 1975, and many of the materials and methods are outdated. Here we describe an updated method of purification of cAMP binding protein from bovine skeletal muscle with the advantages of simplicity, low cost, and high yield The isolation procedures can be completed in two days using commercially available materials and equipment. The cAMP binding properties of the isolated protein can be utilizedfor more than two years. Binding protein isolatedfrom 1 kg bovine muscle is sufficientfor at least 3 x10(4) assay tubes. Furthemore, we describe the techniques of cAMP extraction and quantification that have been used successfully in studying parathyroid hormone signaling as an example of a G protein-linked seven transmembrane domain receptor that signals through the protein kinase A pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.