Far infrared rays (FIRs) have several proven effects on the human body and are generally considered to be biologically beneficial. In this study, we determined the effect of FIRs on hydrogen peroxide (H2O2) -scavenging activity, which was directly increased by 10.26% after FIR application. Even in the indirect use of FIRs accompanying carrot extract, FIRs still contributed to a 5.48% increase in H2O2 -scavenging activity. We further proved that additional FIR treatment resulted in about 23.02% and 18.77% viability increases of osteoblast cells in the 200 and 800 μM H2O2 , respectively; and about 25.67% and 47.16% viability increases of fibroblast cells in the 25 and 50 μM H2O2 , respectively. Finally, FIR treatment also delayed senescence of detached Railway Beggarticks leaves in H2O2 solution with the concentrations of 10, 100, and 1000 μM. By reviewing past articles related to the effects of oxidative stress from metabolically produced H2O2 , we discuss possible benefits of FIRs for plants and animals.
Collagen sponges are widely used scaffolds in bone engineering. To form bone, the osteoblastic cells undergo proliferation, differentiation, and mineralization stages in the scaffold. Crosslinking and freezing temperature are two important variables in fabricating collagen sponges. The purpose of this study was to examine the osteoblastic responses to collagen sponges prepared with or without glutaraldehyde crosslinking at different freezing temperatures (-20 degrees C or -80 degrees C). MC3T3-E1 osteoblastic cells were cultured in differently prepared sponges. Osteoblastic responses examined included cell numbers, osteocalcin expression, and calcium deposition. Cell numbers were measured by DNA content. Osteocalcin expression was determined by RT-PCR and real-time RT-PCR. Calcium deposition was assayed by ortho-cresophthalein complexone method and von Kossa stain. The osteoblastic cells grown in all collagen sponges did not show apparent signs of cytotoxicity. Collagen sponges differed in freezing temperatures resulted in similar osteoblastic responses. Glutaraldehyde-crosslinked sponges demonstrated less cell-mediated contraction and more cell numbers at day 7 (p < 0.005). However, they showed lower osteocalcin expression at day 7 (p < 0.05) and less calcium deposition at day 21 (p < 0.001). In summary, different freezing temperatures played a minor role in osteoblastic responses. Glutaraldehyde crosslinking process, though improved the dimensional stability of collagen sponges, might compromise the osteoblastic differentiation and mineralization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.