Computer networks and the internet have taken an important role in modern society. Together with their development, the need for digital video transmission over these networks has grown. To cope with the user demands and limitations of the network, compression of the video material has become an important issue. Additionally, many video-applications require flexibility in terms of scalability and complexity (e.g. HD/SD-TV, video-surveillance). Current ITU-T and ISO/IEC video compression standards (MPEG-x, H.26-x) lack efficient support for these types of scalability. Waveletbased compression techniques have been proposed to tackle this problem, of which the Motion Compensated Temporal Filtering (MCTF)-based architectures couple state-of-the-art performance with full (quality, resolution, and frame-rate) scalability. However, a significant drawback of these architectures is their high complexity. The computational and memory complexity of both spatial domain (SD) MCTF and in-band (IB) MCTF video codec instantiations are examined in this study. Comparisons in terms of complexity versus performance are presented for both types of codecs. The paper indicates how complexity scalability can be achieved in such video-codecs, and analyses some of the trade-offs between complexity and coding performance. Finally, guidelines on how to implement a fully scalable video-codec that incorporates quality, temporal, resolution and complexity scalability are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.