Adaptation of cholesterol and bile acid synthesis and of biliary cholesterol secretion represent key metabolic responses to maintain cholesterol homeostasis and have been suggested to be influenced by apolipoprotein E (apoE) phenotype in humans. We have investigated hepatic metabolism and secretion of cholesterol into bile in homozygous apoE-deficient (apoE -/-) mice fed normal lab chow. Plasma cholesterol levels were 10 times higher in apoE (-/-) mice than in controls (+/+); triacylglycerol levels were only minimally affected. Hepatic cholesterol (+56%) and triacylglycerol (+232%) contents were significantly increased in apoE (-/-) mice, whereas those of cholesteryl ester and of phospholipids were similar in both groups. Lipid accumulated predominantly in periportal areas of apoE (-/-) livers. Hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG CoA reductase) messenger RNA (mRNA) level and activity were reduced by 45% and 50%, respectively, in apoE (-/-) mice. In contrast, plasma lathosterol/cholesterol ratios, indicative for whole-body cholesterol synthesis, were fourfold increased in these mice. Acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity was similar in livers of both groups. Despite the marked changes in hepatic cholesterol metabolism, neither hepatic bile acid synthesis, bile acid pool size and composition, nor hepatic cholesterol 7alpha-hydroxylase and sterol 27-hydroxylase mRNA levels differed between apoE (-/-) and (+/+) mice. In addition, biliary cholesterol secretion was unaffected in the knock-out mice. Our results show that lack of apoE leads to marked changes in hepatic cholesterol metabolism without altering cholesterol balance across the liver. The data are compatible with increased peripheral cholesterol biosynthesis in apoE-deficient mice.
Hepatic cholesterol metabolism was studied in rats fed purified diets supplemented (9% wt/wt) with either fish oil (FO) (n-3 fatty acids) or corn oil (CO) (n-6 fatty acids) for 4 wk. Rats were equipped with permanent catheters in heart, bile duct, and duodenum to allow studies under normal feeding conditions. [3H, cholesteryl oleate-labeled small unilamellar liposomes, which are rapidly endocytosed by hepatocytes, were intravenously injected to label intrahepatic cholesterol pools, and plasma and bile were collected. FO as compared to CO induced a lowering of plasma cholesterol levels by 38% and oftriglyceride levels by 69%. This reduction in plasma lipids in FO rats was accompanied by: (a) an increased bile acid pool size (28%); (b) a fourfold increase in the ratio cholic acid/chenodeoxycholic acid in bile; (c) increased biliary excretion of cholesterol (51%) (d) accelerated excretion of endocytosed free cholesterol into bile; (e) accelerated incorporation ofendocytosed cholesterol in bile acids; (f) a significant increase in the bile acid-independent fraction of bile flow, and (g) a threefold increase in hepatic alkaline phosphatase activity. The results show that FO induces changes in transport and metabolic pathways of cholesterol in the rat liver, which result in a more rapid disposition of plasmaderived cholesterol into the bile. (J. Clin. Invest. 1991. 88:943-951.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.