Rice husk ash Silica Gel is aproduct which call be used in preventing the humidity by absorbing the water ion on the water andonthe air. This absorbing isbased onthe size, the composition and the total amount ofpolluter which contained on the Silica Gel.
The main obstacle to solid oxide fuel cells (SOFCs) implementation is the high operating temperature in the range of 800–1,000 °C so that it has an impact on high costs. SOFCs work at high temperatures causing rapid breakdown between layers (anode, electrolyte, and cathode) because they have different thermal expansion. The study focused on reducing the operating temperature in the medium temperature range. SmBa0.5Sr0.5Co2O5+δ (SBSC) oxide was studied as a cathode material for IT-SOFCs based on Ce0.8Sm0.2O1.9 (SDC) electrolyte. The SBSC powder was prepared using the solid-state reaction method with repeated ball-milling and calcining. Alumina grinding balls are used because they have a high hardness to crush and smooth the powder of SOFC material. The specimens were then tested as cathode material for SOFC at intermediate temperature (600–800 °C) using X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), electrochemical, and scanning electron microscopy (SEM) tests. The X-ray powder diffraction (XRD) pattern of SBSC powder can be indexed to a tetragonal space group (P4/mmm). The overall change in mass of the SBSC powder is 8 % at a temperature range of 125–800 °C. A sample of SBSC powder showed a high oxygen content (5+δ) that reached 5.92 and 5.41 at temperatures of 200 °C and 800 °C, respectively. High diffusion levels and increased surface activity of oxygen reduction reactions (ORRs) can be affected by high oxygen content (5+δ). The polarization resistance (Rp) of samples sintered at 1000 °C is 4.02 Ωcm2 at 600 °C, 1.04 Ωcm2 at 700 °C, and 0.42 Ωcm2 at 800 °C. The power density of the SBSC cathode is 336.1, 387.3, and 357.4 mW/cm2 at temperatures of 625 °C, 650 °C, and 675 °C, respectively. The SBSC demonstrates as a prospective cathode material for IT-SOFC
The performance of a fluidized bed dryer integrated biomass furnace with air preheater (FBD with APH) and a fluidized bed dryer integrated biomass furnace without air preheater (FBD without APH) for drying of paddy have been evaluated. The FBD with APH and FBD without APH decreased the moisture of paddy from 24% (wet basis) to 14% (wet basis) within 43 and 47 minutes with average temperatures and relative humidities of 59.58 <sup>o</sup>C and 59.14<sup>o</sup>C, and 18.81% and 18.68%, respectively. The drying rate of paddy varied in the range of 0.11 kg/min-0.32 kg/min and 0.10 kg/min- 0.30 kg/min for FBD with APH and FBD without APH, with average values of 0.18kg/min and 0.17kg/min, respectively. The minimum, maximum, and average value specific moisture evaporation rate (SMER) was 0.20 kg/kWh, 0.57 kg/kWh, and 0.31 kg/kWh, respectively for FBD with APH, as well as 0.149 kg/kWh, 0.448 kg/kWh, and 0.252 kg/kWh, respectively, for FBD without APH. The specific energy consumption (SEC), the specific electrical energy consumption (SEEC), and the specific thermal energy consumption (STEC) were varied from 1.749 kWh/kg to 5.076 kWh/kg, 0.090 kWh/kg to 2.872 kWh/kg, and 0.760 kWh/kg to 2.204 kWh/kg, with average values of 3.528 kWh/kg, 1.96 kWh/kg, and 1.532 kWh/kg, respectively for FBD with APH, as well as from 2.234 kWh/kg to 6.702 kWh/kg, 1.056 kWh/kg to 3.167 kWh/kg, and 1.179 kWh/kg to 3.536 kWh/kg, with average values of 4.391 kWh/kg, 2.075 kWh/kg, and 2.316 kWh/kg, respectively, for FBD without APH. The thermal efficiencies of the FBD with APH and FBD without APH were varied between 12.4% and 37.93%, and 9.78% and 29.82%, resvectively, with average values of 20.78% and 16.61%. The thermal efficiency of FBD with APH was higher compared to FBD without APH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.