Stability of oscillatory signatures across magnetoencephalography (MEG) measurements is an important prerequisite for basic and clinical research that has been insufficiently addressed. Here, we evaluated the test-retest reliability of auditory steady-state responses (ASSRs) over two MEG sessions. The study required participants (N=13) to detect the rare occurrence of pure tones interspersed within a stream of 5 Hz or 40 Hz amplitude-modulated (AM) tones. Intraclass correlations (ICC; Shrout and Fleiss, 1979) were derived to assess stability of spectral power changes and the inter-trial phase coherence (ITPC) of task-elicited neural responses. ASSRs source activity was estimated using eLORETA beamforming from bilateral auditory cortex. ASSRs to 40 Hz AM stimuli evoked stronger power modulation and phase-locking than 5 Hz stimulation. Overall, spectral power and ITPC values at both sensor- and source-level showed robust ICC values. Notably, ITPC measures yielded higher ICCs (~0.86-0.96) between sessions compared to the assessment of spectral power change (~0.61-0.82). Our data indicate that spectral modulations and phase consistency of ASSRs in MEG data are highly reproducible, providing support for MEG-measured oscillatory parameters in basic and clinical research.
In a recent paper (Georgopoulos et al 2010 J. Neural Eng. 7 016011) we reported on the power of the magnetoencephalography (MEG)-based synchronous neural interactions (SNI) test to differentiate post-traumatic stress disorder (PTSD) subjects from healthy control subjects and to classify them with a high degree of accuracy. Here we show that the main differences in cortical communication circuitry between these two groups lie in the miscommunication of temporal and parietal and/or parieto-occipital right hemispheric areas with other brain areas. This lateralized temporal-posterior pattern of miscommunication was very similar but was attenuated in patients with PTSD in remission. These findings are consistent with observations (Penfield 1958 Proc. Natl Acad. Sci. USA 44 51-66, Penfield and Perot 1963 Brain 86 595-696, Gloor 1990 Brain 113 1673-94, Banceaud et al 1994 Brain 117 71-90, Fried 1997 J. Neuropsychiatry Clin. Neurosci. 9 420-8) that electrical stimulation of the temporal cortex in awake human subjects, mostly in the right hemisphere, can elicit the re-enactment and re-living of past experiences. Based on these facts, we attribute our findings to the re-experiencing component of PTSD and hypothesize that it reflects an involuntarily persistent activation of interacting neural networks involved in experiential consolidation.
Traumatic experiences can produce post-traumatic stress disorder (PTSD) which is a debilitating condition and for which no biomarker currently exists (Institute of Medicine (US) 2006 Posttraumatic Stress Disorder: Diagnosis and Assessment (Washington, DC: National Academies)). Here we show that the synchronous neural interactions (SNI) test which assesses the functional interactions among neural populations derived from magnetoencephalographic (MEG) recordings (Georgopoulos A P et al 2007 J. Neural Eng. 4 349-55) can successfully differentiate PTSD patients from healthy control subjects. Externally cross-validated, bootstrap-based analyses yielded >90% overall accuracy of classification. In addition, all but one of 18 patients who were not receiving medications for their disease were correctly classified. Altogether, these findings document robust differences in brain function between the PTSD and control groups that can be used for differential diagnosis and which possess the potential for assessing and monitoring disease progression and effects of therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.