A full-duplex fiber-to-the-X (FTTX)/radio-over-fiber (ROF) transport system based on a broadband amplified spontaneous emission (ASE) light source is proposed and demonstrated for rural wide-spread villages. Combining the concepts of long-transmission transmission and ring topology, a long-haul single-mode fiber (SMF) trunk is sharing with multiple rural villages. Externally modulated baseband (BB) (1.25 Gbps) and radio-frequency (RF) (622 Mbps/10 GHz) signals are successfully transmitted simultaneously. Good bit error rate (BER) performance was achieved to demonstrate the practice of providing wire/wireless connections for long-haul wide-spread rural villages. Since our proposed system uses only a broadband ASE light source to achieve multi-wavelengths transmissions, it also reveals an outstanding one with simpler and more economic advantages.
A full-duplex lightwave transport system employing phase-modulated radio-over-fiber (RoF) and intensity-remodulated CATV signals in two-way transmission is proposed and experimentally demonstrated. The transmission performances of RoF and CATV signals are investigated in bidirectional way, with the assistance of only one optical sideband and optical single sideband (SSB) schemes at the receiving sites. The experimental results show that the limitation on the optical modulation index (OMI) of the downlink RoF signal can be relaxed due to the constant intensity of phase modulation scheme. Impressive transmission performances of bit error rate (BER), carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple-beat (CTB) were obtained over two 20-km single-mode fiber (SMF) links. This proposed system reveals an outstanding one with economy and convenience to be installed.
A bidirectional fiber optical CATV transport system employing phase modulation (PM) scheme and frequency up-conversion technique to deal with downstream CATV signals, and using light injection-locked distributed feedback laser diode (DFB LD) as a duplex transceiver at the receiving site is proposed and experimentally demonstrated. With optimum injection wavelength and power level, a DFB LD is efficiently employed for both the transmitter and receiver operations. Such DFB LD is used to replace the functions of delay interferometer (DI) and CATV receiver, and also to be as the upstream light source. To the best of our knowledge, it is the first time to successfully utilize a DFB LD to detect the phase-modulated CATV signals. Impressive experimental results prove that our proposed systems not only can employ the PM scheme and the frequency up-conversion technique to optimize the overall performances of systems, but also can use an injection-locked DFB LD to detect the downstream phase-modulated CATV signals as well as to transmit the upstream CATV ones simultaneously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.