The isolation of the body from engine vibration is the most challenging and disruptive vibrational problem. Active engine mounts (AEMs), especially electromagnetic AEMs, achieve a significant performance improvement in decreasing the wide frequency band vibration. Increasing research interest is necessary to provide the academic community with a guideline for electromagnetic AEMs. Therefore, the current review aims to comprehensively supplement the review of AEMs. The key reviews of electromagnetic AEMs focus on (1) general considerations of electromagnetic AEMs, (2) models, and (3) control strategies. This paper presents a review of the current status and developmental progress of AEMs. A theoretical model, a finite-element model, and the identification (or experimental modelling) of electromagnetic AEMs during the last 2 decades are then studied. Finally, control strategies, such as classical control, adaptive control, and two degree of freedom (2DOF) control, are discussed and compared. The main purpose of this paper is to meet the needs of researchers and engineers engaged in electromagnetic AEM analysis and control.
By analyzing the roller force, the nonlinear stiffness model of the double-row tapered roller hub bearing is derived, and the method of solving the hub bearing stiffness matrix is summarized: if the displacement between the inner and outer rings is known, the stiffness of the hub bearing can be directly calculated. If only the external load of the hub bearing is known, the displacement of the hub bearing needs to be solved by numerical method, and then the stiffness of the hub bearing can be calculated. The improved Newton-Raphson method is used to solve the stiffness matrix of the hub bearing. Three-dimensional FE model of DRTRBs is presented and validated the proposed the stiffness matrix of the hub bearing. It is found that the radial stiffness of the hub bearing is greater than the axial stiffness. The stiffness of the hub bearing is greatly affected by the vertical force of the ground and the wheel driving torque, showing obvious nonlinearity. The smaller the vertical ground load and wheel driving torque, the greater the influence of vertical ground load and wheel driving torque on the hub bearing stiffness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.