Combination of photodynamic therapy (PDT) with small interfering RNA (siRNA) therapy has become a major strategy in cancer treatment for enhancing anticancer efficacy. However, developing nanoplatform that can promote siRNA release and collaborate with efficient PDT under NIR light irradiation is still a big challenge. Photo‐induced charge‐variable conjugated polyelectrolyte brushes encapsulating upconversion nanoparticles (UCNP@CCPEB) as an efficient nanoplatform are reported. Cationic conjugated polyelectrolyte brush (CCPEB) is synthesized through quaternary ammoniation of N‐functionalized polyfluorene brush by photodegradable 2‐nitrobenzyl‐2‐bromoacetate. CCPEB with abundant positive charges and intrinsic photosensitizer (PS) performance is good for integrating siRNA carrier and PS into one molecule. The obtained CCPEB next encapsulates upconversion nanoparticle for realizing its NIR light excitation. Agarose gel electrophoresis experiments show that UCNP@CCPEB present good stability and excellent siRNA‐loading capacity (1 mol UCNP@CCPEB to at least 32.5 mol siRNA). Under 980 nm light irradiation, UCNP@CCPEB exhibit efficient single oxygen production for PDT. Concurrently, the photoresponsive cationic side‐chain of CCPEB turns into zwitterionic chain and thus accelerates its siRNA release to 80%. In vitro and in vivo experiments show that the successful A549 tumor suppression is achieved by UCNP@CCPEB/siPlk1 complex under 980 irradiation. It is envisioned that UCNP@CCPEB can serve as an efficient platform for combining various phototherapies together.
Developing lysosome-targeting organic nanoparticles combined with photoacoustic imaging (PAI) and photodynamic therapy (PDT) functions toward personalized medicine are highly desired yet challenging. Here, for the first time, lysosome-targeting BODIPY nanoparticles were engineered by encapsulating near-infrared (NIR) absorbed BODIPY dye within amphiphilic DSPE-mPEG5000 for high-performing lysosomal PAI and acid-activatable PDT against cancer cells under NIR light.
Acute venous thrombosis is prevalent and potentially fatal. Accurate diagnosis of early thrombus is needed for patients in timely clinical intervention to prevent life-threatening conditions. Photoacoustic imaging (PAI) with excellent spatial resolution and high optical contrast shows more promise for this purpose. However, its application is dramatically limited by its signal-off effect on thrombus because of the ischemia in thrombus which lacks the endogenous photoacoustic (PA) signal of hemoglobin. To address this dilemma, we herein report the feasibility of using organic semiconducting nanoparticles (NPs) for contrast-enhanced PAI of thrombus in living mice. An organic semiconducting NP, self-assembled by amphiphilic perylene-3,4,9,10-tetracarboxylic diimide (PDI) molecules, is chemically modified with cyclic Arg-Gly-Asp (cRGD) peptides as a PA contrast agent (cRGD-PDI NPs) for selectively lightening early thrombus. cRGD-PDI NPs presents high PA intensity, good stability in light and serum, and sufficient blood-circulating half-life. In living mice, PA intensity of early thrombus significantly increases after tail vein injection of cRGD-PDI NPs, which is 4-fold greater than that of the control, blocking, and old thrombus groups. Pathological and immunohistochemical findings show that glycoprotein IIb/IIIa abundant in early thrombus is a good biomarker targeted by cRGD-PDI NPs for distinguishing early thrombus from old thrombus by PAI. Such a lightening PAI effect by cRGD-PDI NPs successfully provides accurate information including the profile, size and conformation, and spatial distribution of early thrombus, which may timely monitor the obstructive degree of thrombus in blood vessels and the thrombolysis effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.