Carbon dots (CDs) are a kind of zero-dimensional carbon-based nanoparticles with superb light-trapping ability, high optical absorption ability, and superior intrinsic catalytic activity. Due to these advantageous properties, they have received enthusiastic attention from researchers in the field of optical devices. The application of carbon dots in dye-sensitized solar cells has increased with steady steps recently, especially as a substitute for precious Ru-sensitizers and Pt counter electrodes. In this review, we classified the application of carbon dots in dye-sensitized solar cells in recent years and explained the mechanisms of improving the performance of carbon dots. The significant impact of surface functionalization of CDs on the performance of dye-sensitized solar cells was discussed. Lastly, some challenges and application prospects of carbon dots in the dye-sensitized solar cell were proposed, which is meaningful for the further exploration and application of carbon dots as a new energy material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.