We present a scheme for small-displacement measurements using high-order Hermite-Gauss modes and balanced homodyne detection. We demonstrate its use with experimental results of displacement measurements using fundamental transverse mode TEM00 and first order transverse mode TEM10 as signal modes. The results show a factor of 1.41 improvement in measurement precision with the TEM10 mode compared with that with the TEM00 mode. This scheme has potential applications in precision metrology, atomic force microscopy, and optical imaging.
Aided by quantum sources, quantum metrology helps to enhance measurement precision. Here, we introduce a method to enhance the measurement of a rotation angle. As a proof of principle, assisted by a quantum state called the squeezed orbital-angular-position (OAP) state and balance homodyne detection, we demonstrate in experiments 3 dB-enhanced measurements of a rotation-angle beyond the shot noise limit. A precision of up to 17.7 nrad/Hz is obtained. Furthermore, we discuss means to further improve the measurement with a high-order precision OAP squeezed state. The method holds promise for future practical applications, such as in high-sensitive Sagnac interferometry.
According to the Heisenberg uncertainty principle, the precision of any physical quantity measurement is limited by quantum fluctuation in general, which leads to the so-called standard quantum limit (SQL). The SQL can be beaten by using squeezed light, hence enhancing the measurement accuracy. Squeezed light is a typical nonclassical light, it exhibits reduced noise in one quadrature component. Since Caves proposed the scheme of phase measurement enhancement with squeezing, squeezed light has been used to enhance measurement precision in many areas. This review focuses on the following four kinds of precision measurements based on squeezed light: the measurements of relative phase, small lateral displacement and tilt, magnetic field, and clock synchronization. For all of these measurements, vacuum squeezing has been used to enhance measurement precision, while the types of squeezing (squeezing angle, transverse mode, polarization etc.) are different. For phase measurement, quadrature squeezing is injected into the conventionally unused input port of Mach-Zehnder interferometer (MZI) or Michelson interferometer (MI). For displacement or tilt measurement, a vacuum squeezing beam of a special transverse mode is coupled into an intense coherent beam, yielding a spatial-squeezed light whose transverse position or tilt angle noise is lower than that of a classical light beam. Based on the Faraday effect of polarization rotation, the magnetic field can be detected precisely. The precision can be increased further by using the polarization squeezing. The polarization squeezing can be generated by coupling two orthogonal polarized beams together, a coherent beam and a vacuum squeezed beam. Various polarization squeezing can be illustrated on the Poincaré sphere. Finally, in the clock synchronization based on the optical frequency comb, squeezed light can be used to enhance the time measurement precision. A theoretical scheme with multimode squeezing of supermode (a kind of mode describing the frequency mode of a pulse laser beam) is introduced. The squeezing has extensively been applied into the quantum precision measurements such as gravitational wave detection as well as biological measurement and will play a more important role in the near future.
Spatial quantum optics and quantum information based on the high order transverse mode are of importance for the super-resolution measurement beyond the quantum noise level. We demonstrated experimentally the transverse plane TEM 01 Hermite-Gauss quantum squeezing. The squeezed TEM 01 mode is generated in a degenerate optical parametric amplifier with the nonlinear crystal of periodically poled KTiOPO 4 . The level of 2.2-dB squeezing is measured using a spatial balance homodyne detection system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.