Range extensions of aquatic Ponto-Caspian macroinvertebrate species in Europe have mainly been facilitated by the interconnection of river basins through man-made canals and intentional introductions. Three inland migration corridors can be distinguished: (i) a northern corridor: Volga [Formula: see text] Lake Beloye [Formula: see text] Lake Onega [Formula: see text] Lake Ladoga [Formula: see text] Neva [Formula: see text] Baltic Sea, (ii) a central corridor connecting the rivers Dnieper [Formula: see text] Vistula [Formula: see text] Oder [Formula: see text] Elbe [Formula: see text] Rhine, and (iii) a southern corridor connecting the Danube and Rhine rivers. Important trade harbours in Europe were connected via these corridors allowing further range extensions of macroinvertebrate species attached to a vessel's hull or in ballast water. The central corridor was the main migration route before 1992, after which the southern corridor became the most important migration route for the range expansions to the west because of the reopening of the Main-Danube Canal, connecting the Rhine and Danube basins. Especially the water level maintenance in the upper part of the canal, with water supply from the Danube basin, facilitated migration of mobile animals (e.g., crustaceans) from the Danube basin towards the Rhine basin; however, contribution of other transport mechanisms (e.g., shipping) is expected in the near future.
The predatory c1adoceran Bythotrephes longimanus LEYDIG has a natural distribution that extends throughout much of the Palearctic region, and an ever increasing distribution in the Great Lakes basin of North America, where it was first observed in 1982. In this study we define characteristics of 55 waterbodies with and without Bythotrephes in Europe, and use these distributions to predict the species' occurrence in 49 lakes in the Great Lakes basin of North America. Lakes in Europe that supported Bythotrephes were significantly larger, deeper, had higher transparency and lower maximum bottom temperature during summer, and lower total chlorophyll concentration, than those that lacked the species. These patterns also were observed for lakes in North America, although differences between invaded and noninvaded ba sins were significant only for lake area and maximum depth. A discriminant fu nction model correctly predicted Bythotrephes occurrence in 91 % of study lakes in Europe, and was influenced most by Se cchi disk transparency and lake surface area. Applica tion of this model to North America correctly predicted occurrence of Bythotrephes in 82 % (1 8 of 22 ) of lakes in which the species has been recorded. However, the model incorrectly predicted Bythotrephes presence in 74 % (20 of 27 ) of lakes in which the species has not yet been observed. These fi ndings indicate that many of the study lakes in the Great Lakes basin may be vulnerable to invasion by Bythotrephes. Human activ-
The Eurasian spiny waterflea (Bythotrephes longimanus) is a predacious zooplankter that has increased its range in Europe and is rapidly invading inland water-bodies throughout North America's Great Lakes region. To examine the genetics of these invasions, we isolated five microsatellite DNA loci with between 5 and 19 alleles per locus. We sampled three populations where B. longimanus has been historically present (Switzerland, Italy, and Finland) as well as an introduced European population (the Netherlands) and three North American populations (Lakes Erie, Superior, Shebandowan). Consistent with a bottleneck during colonization (i.e. founder effect), average heterozygosities of the four European populations ranged from 0.310 to 0.599, and were higher than that of three North American populations (0.151-0.220). Pairwise F(ST) estimates among North American populations (0.002-0.063) were not significantly different from zero and were much lower than among European populations (0.208-0.474). This is consistent with a scenario of high gene flow among North American populations relative to that of European ones. Contrary to an invasion bottleneck, however, Erie and Superior populations contained similar numbers of rare alleles as European populations. Assignment tests identified several migrant genotypes in all introduced populations (the Netherlands, Erie, Superior, Shebandowan), but rarely in native ones (Switzerland, Italy and Finland). A large number of genotypes from North America were assigned to our Italian population suggesting a second, previously unidentified, invasion source somewhere in the region of northern Italy. Together, our results support an invasion bottleneck for North American populations that has been largely offset by gene flow from multiple native sources, as well as gene flow among introduced populations.
Bythotrephes Leydig is a predatory, onychopod cladoceran native to Eurasia that typically inhabits oligo-and mesotrophic water bodies of the Palaearctic region. It recently invaded 70 North American lakes, prompting a re-evaluation of the taxonomic status, global distribution, and determinants of local occurrence and abundance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.