A well-recognised open conceptual problem in relativistic quantum field theory concerns the relation between measurement and causality. Naive generalisations of quantum measurement rules can allow for superluminal signalling ('impossible measurements'). This raises the problem of delineating physically allowed quantum measurements and operations. We analyse this issue in a recently proposed framework in which local measurements (in possibly curved spacetime) are described physically by coupling the system to a probe. We show that the state-update rule in this setting is consistent with causality provided that the coupling between the system and probe is local. Thus, by establishing a well-defined framework for successive measurements, we also provide a class of physically allowed operations. Conversely, impossible measurements can only be performed using impossible (non-local) apparatus.
The paper investigates relations between the phase space structure of a quantum field theory ("nuclearity") and the concept of pointlike localized fields. Given a net of local observable algebras, a phase space condition is introduced that allows a very detailed description of the theory's field content. An appendix discusses noninteracting models as examples.
Integrable quantum field theories in 1+1 dimensions have recently become amenable to a rigorous construction, but many questions about the structure of their local observables remain open. Our goal is to characterize these local observables in terms of their expansion coefficients in a series expansion by interacting annihilators and creators, similar to form factors. We establish a rigorous one-to-one characterization, where locality of an observable is reflected in analyticity properties of its expansion coefficients; this includes detailed information about the high-energy behaviour of the observable and the growth properties of the analytic functions. Our results hold for generic observables, not only smeared pointlike fields, and the characterizing conditions depend only on the localization region -we consider wedges and double cones -and on the permissible high energy behaviour.
A large class of quantum field theories on 1+1 dimensional Minkowski space, namely, certain integrable models, has recently been constructed rigorously by Lechner. However, the construction is very abstract and the concrete form of local observables in these models remains largely unknown. Aiming for more insight into their structure, we establish a series expansion for observables, similar but not identical to the well-known form factor expansion. This expansion will be the basis for a characterization and explicit construction of local observables, to be discussed elsewhere. Here, we establish the expansion independent of the localization aspect, and analyze its behavior under space-time symmetries. We also clarify relations with deformation methods in quantum field theory, specifically, with the warped convolution in the sense of Buchholz and Summers.
Short distance scaling limits of a class of integrable models on two-dimensional Minkowski space are considered in the algebraic framework of quantum field theory. Making use of the wedge-local quantum fields generating these models, it is shown that massless scaling limit theories exist, and decompose into (twisted) tensor products of chiral, translation-dilation covariant field theories. On the subspace which is generated from the vacuum by the observables localized in finite light ray intervals, this symmetry can be extended to the Möbius group. The structure of the interval-localized algebras in the chiral models is discussed in two explicit examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.