In this paper, we experimentally validate the functionality of a developed algorithm for spectrum cartography using adaptive Gaussian radial basis functions (RBF). The RBF are strategically centered around representative centroid locations in a machine learning context. We assume no prior knowledge about neither the power spectral densities (PSD) of the transmitters nor their locations. Instead, the received signal power at each location is estimated as a linear combination of different RBFs. The weights of the RBFs, their Gaussian decaying parameters and locations are jointly optimized using expectation maximization with a least squares loss function and a quadratic regularizer. The performance of adaptive RBFs based spectrum cartography is shown through measurements using a universal software radio peripheral, a customized node and LabView framework. The obtained results verify the ability of adaptive RBF to construct spectrum maps with an acceptable performance measured by normalized mean square error (NMSE).
The increase in the density of the IP cores being fabricated on a chip poses on-chip communication challenges and heat dissipation. To overcome these issues, Network-on-Chip (NoC) based communication architecture is introduced. In the nanoscale era NoCs are prone to faults which results in performance degradation and un-reliability. Hence efficient fault-tolerant methods are required to make the system reliable in contrast to diverse component failures. This paper presents a flexible spare core placement in torus topology based faulttolerant NoC design. The communications related to the failed core is taken care by selecting the best position for a spare core in the torus network. By considering this we propose a metaheuristic based Particle Swarm Optimization (PSO) technique to find suitable position for the spare core that minimizes the communication cost. We have experimented with several application benchmarks reported in the literature by varying the network size and by varying the fault-percentage in the network. The results show significant reduction in terms of communication cost compared to other approaches reported in literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.