Growing evidence from animal studies indicates brain-damaging properties of nicotine exposure. Investigations in humans found a wide range of functional cerebral effects of nicotine and cigarette smoking, but studies focusing on brain damage are sparse. In 22 smokers and 23 never-smokers possible differences of the cerebral structures were investigated using magnetic resonance imaging and voxel-based morphometry. Significantly smaller grey matter volume and lower grey matter density (P = 0.05, corrected) were observed in the frontal regions (anterior cingulate, prefrontal and orbitofrontal cortex), the occipital lobe and the temporal lobe including parahippocampal gyrus, in smokers than in never-smokers. Group differences of either grey matter volume or grey matter density were also found in the thalamus, cerebellum and substantia nigra, among other regions. Smokers did not show greater volumes than never-smokers in any cerebral region. Magnitude of lifetime exposure to tobacco smoke (pack-years) was inversely correlated with volume of frontal and temporal lobes and cerebellum (P = 0.001, uncorrected). The data indicate structural deficits of several cortical and subcortical regions in smokers relative to never-smokers. The topographic profile of the group differences show some similarities to brain networks known to mediate drug reinforcement, attention and working memory processing. The present findings may explain in part the frequently reported cognitive dysfunctions in chronic cigarette consumers.
Background: Early dysfunction of the brain reward system in schizophrenia might be already recognized in the prodromal phase of this illness. We used functional magnetic resonance imaging to assess the blood oxygen level-dependent response in the ventral striatum (VS) of subjects with ultra-high risk for psychosis during the presentation of reward-indicating and loss-indicating stimuli. Methods: Thirteen prodromal patients (mean age: 25.5 ± 4.6 years) and 13 age-matched healthy volunteers participated in an incentive monetary delay task, in which visual cues predicted that a rapid response to a subsequent target stimulus will gain money, avoid losing money or have no consequence. Results: Compared with the neutral condition, anticipation of reward loss-avoidance elicited significant activation of the VS in both healthy subjects and subjects with ultra-high risk for psychosis, but there was only a statistical tendency for less activation during loss-avoidance anticipation in prodromal compared to healthy subjects. Discussion: This study provides a first weak hint, as revealed by functional magnetic resonance imaging, for impaired activation of a central area of the mesolimbic dopaminergic brain reward system, the VS, already in subjects with ultra-high risk for psychosis, which is in line with results of patients with full-blown schizophrenic psychosis. This pilot study has, however, strong limitations, and its results need to be replicated first before they can be used e.g. for early recognition of patients in the schizophrenic prodrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.