Here we demonstrate a novel homogeneous one-step immunoassay, utilizing a pair of recombinant antibody antigen-binding fragments (Fab), that is specific for HT-2 toxin and has a positive readout. Advantages over the conventional competitive immunoassay formats such as enzyme-linked immunosorbent assay (ELISA) are the specificity, speed, and simplicity of the assay. Recombinant antibody HT2-10 Fab recognizing both HT-2 and T-2 toxins was developed from a phage display antibody library containing 6 × 10(7) different antibody clones. Specificity of the immunoassay was introduced by an anti-immune complex (IC) antibody binding the primary antibody-HT-2 toxin complex. When the noncompetitive immune complex assay was compared to the traditional competitive assay, an over 10-fold improvement in sensitivity was observed. Although the HT2-10 antibody has 100% cross-reactivity for HT-2 and T-2 toxins, the immune complex assay is highly specific for HT-2 alone. The assay performance with real samples was evaluated using naturally contaminated wheat reference material. The half-maximal effective concentration (EC50) value of the time-resolved fluorescence resonance energy transfer (TR-FRET) assay was 9.6 ng/mL, and the limit of detection (LOD) was 0.38 ng/mL (19 μg/kg). The labeled antibodies can be predried to the assay vials, e.g., microtiter plate wells, and readout is ready in 10 min after the sample application.
Plasmonic biosensing has emerged as the most sensitive label-free technique to detect various molecular species in solutions and has already proved crucial in drug discovery, food safety and studies of bio-reactions. This technique relies on surface plasmon resonances in ~50 nm metallic films and the possibility to functionalize the surface of the metal in order to achieve selectivity. At the same time, most metals corrode in bio-solutions, which reduces the quality factor and darkness of plasmonic resonances and thus the sensitivity. Furthermore, functionalization itself might have a detrimental effect on the quality of the surface, also reducing sensitivity. Here we demonstrate that the use of graphene and other layered materials for passivation and functionalization broadens the range of metals which can be used for plasmonic biosensing and increases the sensitivity by 3-4 orders of magnitude, as it guarantees stability of a metal in liquid and preserves the plasmonic resonances under biofunctionalization. We use this approach to detect low molecular weight HT-2 toxins (crucial for food safety), achieving phase sensitivity~0.5 fg/mL, three orders of magnitude higher than previously reported. This proves that layered materials provide a new platform for surface plasmon resonance biosensing, paving the way for compact biosensors for point of care testing.
We developed an HT-2 toxin-specific simple ELISA format with a positive read-out. The assay is based on an anti-immune complex (IC) scFv antibody fragment, which is genetically fused with alkaline phosphatase (AP). The anti-IC antibody specifically recognizes the IC between a primary anti-HT-2 toxin Fab fragment and an HT-2 toxin molecule. In the IC ELISA format, the sample is added together with the scFv-AP antibody to the ELISA plate coated with the primary antibody. After 15 min of incubation and a washing step, the ELISA response is read. A competitive ELISA including only the primary antibody recognizes both HT-2 and T-2 toxins. The anti-IC antibody makes the assay specific for HT-2 toxin, and the IC ELISA is over 10 times more sensitive compared to the competitive assay. Three different naturally contaminated matrices: wheat, barley and oats, were used to evaluate the assay performance with real samples. The corresponding limits of detection were 0.3 ng/mL (13 µg/kg), 0.1 ng/mL (4 µg/kg) and 0.3 ng/mL (16 µg/kg), respectively. The IC ELISA can be used for screening HT-2 toxin specifically and in relevant concentration ranges from all three tested grain matrices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.