Abstract-This work focus on an innovative noiseless charge transfer TDI pixel fabricated with a one poly standard Imaging CMOS technology. Parallel column charge to voltage conversion decreases drastically the number of needed charge transfers while keeping high motion/dynamic MTF (multi phase approach), high QE (photodiode based architecture) and low noise (no noise summation).
CMOS image sensors are widely used on Earth and are becoming increasingly favourable for use in space. Advantages, such as low power consumption, and ever-improving imaging peformance make CMOS an attractive option. The ability to integrate camera functions on-chip, such as biasing and sequencing, simplifies designing with CMOS sensors and can improve system reliablity. One potential disadvantage to the use of CMOS is the possibility of single event effects, such as single event latchup (SEL), which can cause malfunctions or even permanent destruction of the sensor. These single event effects occur in the space environment due to the high levels of radiation incident on the sensor. This work investigates the ocurrence of SEL in CMOS image sensors subjected to heavy-ion irradiation. Three devices are investigated, two of which have triple-well doping implants. The resulting latchup cross-sections are presented. It is shown that using a deep p well on 18 µm epitaxial silicon increases the radiation hardness of the sensor against latchup. The linear energy transfer (LET) threshold for latchup is increased when using this configuration. Our findings suggest deep p wells can be used to increase the radiation tollerance of CMOS image sensors for use in future space missions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.