Landslides and rockfalls are key geomorphic processes in mountain basins. Their quantification and characterization are critical for understanding the processes of slope failure and their contributions to erosion and landscape evolution. We used digital photogrammetry to produce a multi-temporal record of erosion (1963–2005) of a rock slope at the head of the Illgraben, a very active catchment prone to debris flows in Switzerland. Slope failures affect 70% of the study slope and erode the slope at an average rate of 0.39 ± 0.03 m yr¯¹. The analysis of individual slope failures yielded an inventory of ~2500 failures ranging over 6 orders of magnitude in volume, despite the small slope area and short study period. The slope failures form a characteristic magnitude–frequency distribution with a rollover and a power-law tail between ~200 m³ and 1.6 × 106 m³ with an exponent of 1.65. Slope failure volume scales with area as a power law with an exponent of 1.1. Both values are low for studies of bedrock landslides and rockfall and result from the highly fractured and weathered state of the quartzitic bedrock. Our data suggest that the magnitude–frequency distribution is the result of two separate slope failure processes. Type (1) failures are frequent, small slides and slumps within the weathered layer of highly fractured rock and loose sediment, and make up the rollover. Type (2) failures are less frequent and larger rockslides and rockfalls within the internal bedded and fractured slope along pre-determined potential failure surfaces, and make up the power-law tail. Rockslides and rockfalls of high magnitude and relatively low frequency make up 99% of the total failure volume and are thus responsible for the high erosion rate. They are also significant in the context of landscape evolution as they occur on slopes above 45° and limit the relief of the slope. Copyright © 2012 John Wiley & Sons, Ltd
Image matching is a key procedure in the process of generation of Digital Surface Models (DSM). We have developed a new approach for image matching and the related software package. This technique has proved its good performance in many applications. Here, we demonstrate its use in 3D tree modelling. After a brief description of our image matching technique, we show results from analogue and digital aerial images and high-resolution satellite images (IKONOS). In some cases, comparisons with manual measurements and/or airborne laser data have been performed. The evaluation of the results, qualitative and quantitative, indicate the very good performance of our matcher. Depending on the data acquisition parameters, the photogrammetric DSM can be denser than a DSM generated by laser, and its accuracy may be better than that from laser, as in these investigations. The tree canopy is well modelled, without smoothing of small details and avoiding the canopy penetration occurring with laser. Depending on the image scale, not only dense forest areas but also individual trees can be modelled.
This paper describes the 3D modelling of Pinchango Alto, Peru, based on a combination of image and range data. Digital photogrammetry and laser scanning allow archaeological sites to be recorded efficiently and in detail even under unfavourable conditions. In 2004 we documented Pinchango Alto, a typical site of the hitherto poorly studied Late Intermediate Period on the south coast of Peru, with the aim of conducting spatial archaeological analyses at different scales. The combined use of a mini helicopter and a terrestrial laser scanner, both equipped with a camera, allowed a fast yet accurate recording of the site and its stone architecture. In this paper we describe the research background, the 3D modelling based on different image and range data sets, and the resulting products that will serve as a basis for archaeological analysis.
Unmanned aerial vehicle (UAV) photogrammetry has been used in a growing number of diverse applications across different scientific disciplines. Early applications of UAVs included cultural heritage and archaeology, mainly for the documentation and modelling of monuments, buildings and landscapes. In this paper, the focus is on the application of UAVs for documenting archaeological excavations. As excavating is a dynamic process and the objects to be acquired can change significantly within a few hours, UAVs can provide a suitable alternative to traditional measurement methods such as measuring tapes and tachymeters. Nevertheless, the image processing steps have to be automated, as a large number of resulting materials, usually sketches, maps, ortho‐images and 3D models, need to be available quickly. In order to accelerate the processing workflow, an interface between the UAV ground control software and various photogrammetric software packages was developed at ETH Zurich, which allows for an efficient management and transfer of orientation, trajectory and sensor data for rapid project set up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.