This paper describes the 3D modelling of Pinchango Alto, Peru, based on a combination of image and range data. Digital photogrammetry and laser scanning allow archaeological sites to be recorded efficiently and in detail even under unfavourable conditions. In 2004 we documented Pinchango Alto, a typical site of the hitherto poorly studied Late Intermediate Period on the south coast of Peru, with the aim of conducting spatial archaeological analyses at different scales. The combined use of a mini helicopter and a terrestrial laser scanner, both equipped with a camera, allowed a fast yet accurate recording of the site and its stone architecture. In this paper we describe the research background, the 3D modelling based on different image and range data sets, and the resulting products that will serve as a basis for archaeological analysis.
Unmanned aerial vehicle (UAV) photogrammetry has been used in a growing number of diverse applications across different scientific disciplines. Early applications of UAVs included cultural heritage and archaeology, mainly for the documentation and modelling of monuments, buildings and landscapes. In this paper, the focus is on the application of UAVs for documenting archaeological excavations. As excavating is a dynamic process and the objects to be acquired can change significantly within a few hours, UAVs can provide a suitable alternative to traditional measurement methods such as measuring tapes and tachymeters. Nevertheless, the image processing steps have to be automated, as a large number of resulting materials, usually sketches, maps, ortho‐images and 3D models, need to be available quickly. In order to accelerate the processing workflow, an interface between the UAV ground control software and various photogrammetric software packages was developed at ETH Zurich, which allows for an efficient management and transfer of orientation, trajectory and sensor data for rapid project set up.
Commission I, WG I/V KEY WORDS: Adjustment, Matching, Photogrammetry, Point Cloud, Surface, Test, UAVs
ABSTRACT:Nowadays, small size UAVs (Unmanned Aerial Vehicles) have reached a level of practical reliability and functionality that enables this technology to enter the geomatics market as an additional platform for spatial data acquisition. Though one could imagine a wide variety of interesting sensors to be mounted on such a device, here we will focus on photogrammetric applications using digital cameras. In praxis, UAV-based photogrammetry will only be accepted if it a) provides the required accuracy and an additional value and b) if it is competitive in terms of economic application compared to other measurement technologies. While a) was already proven by the scientific community and results were published comprehensively during the last decade, b) still has to be verified under real conditions. For this purpose, a test data set representing a realistic scenario provided by ETH Zurich was used to investigate cost effectiveness and to identify weak points in the processing chain that require further development. Our investigations are limited to UAVs carrying digital consumer cameras, for larger UAVs equipped with medium format cameras the situation has to be considered as significantly different. Image data was acquired during flights using a microdrones MD4-1000 quadrocopter equipped with an Olympus PE-1 digital compact camera. From these images, a subset of 5 images was selected for processing in order to register the effort of time required for the whole production chain of photogrammetric products. We see the potential of mini UAV-based photogrammetry mainly in smaller areas, up to a size of ca. 100 hectares. Larger areas can be efficiently covered by small airplanes with few images, reducing processing effort drastically. In case of smaller areas of a few hectares only, it depends more on the products required. UAVs can be an enhancement or alternative to GNSS measurements, terrestrial laser scanning and ground based photogrammetry. We selected the above mentioned test data from a project featuring an area of interest within the practical range for mini UAVs. While flight planning and flight operation are already quite efficient processes, the bottlenecks identified are mainly related to image processing. Although we used specific software for image processing, the identified gaps in the processing chain today are valid for most commercial photogrammetric software systems on the market. An outlook proposing improvements for a practicable workflow applicable in projects in private economy will be given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.