Abstract— Kalanchoë blossfeldiana seeds are light‐requiring for seed germination. On water or KNO3 solution and irradiated with several daily red (R) irradiations, the seeds show a low‐fluence (LF) response which is far‐red (FR) reversible. Incubated on gibberellic acid (GA3) the seeds show a very‐low‐fluence (VLF) response which can be saturated with red as well as with far red light. As germination is a quantal response, the sub‐optimal segments of the dose‐response curves are analysed by means of probit analysis in order to calculate the seed population parameters. There is a linear relation between the probit of the germination response and the logarithm of the fluence. Moreover, the slope for the VLF as well as for the LF response is the same. The VLF requires about 8 × 104 times less fluence than the LF. VLF saturation with FR requires about 200 times more fluence than with R.
Although, GA3 and KNO3 modulate VLF and LF, respectively, there is no direct influence on the phytochrome‐phototransformations. Once Pfr is formed (in VLF or LF, or preserved in dry seeds) germination is proportional to the GAS concentration (for VLF and dark germination) or proportional to the KNO, concentration (for LF). The non‐photochemical events leading to germination seem to be triggered by a similar action mechanism for both GA, and KNO3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.